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Abstract
Today’s manufacturing systems are becoming increasingly complex, dynamic and connected hence continual prediction of
manufactured product quality is a key to look for patterns that can eventually lead to improved accuracy and productivity.
Recent developments in artificial intelligence, especially machine learning have shown great potential to transform the
manufacturing domain through analytics for processing vast amounts of manufacturing data generated (Esmaeilian et al. in
J Manuf Syst 39:79–100, 2016). Although prediction models have been built to predict product quality with good accuracy,
they assume that same distribution applies on training data and testing data hence fail to produce satisfying results when
machines work under different conditions with varying data distribution. Naïve re-collection and re-annotation of data for
each newworking condition can be very expensive thus is not a feasible solution. To cope with this problem, we adopt transfer
learning approach called domain adaptation to transfer the knowledge learned from one labelled operating condition (source
domain) to another operating condition (target domain) without labels. Particularly, we propose an end-to-end framework
for cross-machine product quality prediction, which is able to alleviate domain shift problem. To facilitate the cross-machine
prediction performance, a systematic feature selection approach is designed and integrated to generate most suitable feature
set to characterize the collected data. Comprehensive experiments have been conducted using actual manufacturing data and
the results demonstrate significant improvement on cross-machine product quality prediction as compared to conventional
techniques.
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Introduction

Hard turning is an important process in precision manu-
facturing with lower cost, high quality and rapid setup.
It is commonly used to replace grinding process or pre-
grind preparation processes for products with high precision
requirement, like shafts, bearings, gears, molds, etc. The pro-
cessing accuracy is affected by a number of factors such
as cutting parameters, fixture design, cutting insert quality,
and machine dynamics etc. It has significant impact on the
machined product quality, like dimension and surface rough-
ness. The product quality is usually inspected and measured
offline using metrology equipment after the machining pro-
cess completed (Kwon et al. 2002; Lu et al. 2010). Offline
measurement of quality with microscope or stylus is time-
consuming also. This could lead to high rejection rate due to
delay in response time to improve processing accuracy when
problem occurs. Lead time for production is longwhile prod-
uct quality is critical to the business success. The machined
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product quality, if predicted in real-time during machining
process, can be used to find the potential factors that affect
the processing accuracy and take corresponding corrective
action to improve the production yield in manufacturing. To
enable the ability of machined product quality prediction,
a mathematical model should be constructed to relate the
manufacturing operation condition and other factors to the
machined product quality (Kano and Nakagawa 2008; Nada
et al. 2006).

The factors that have significant effect on the surface
roughness and dimensional accuracy can be categorized as
workpiece properties, cutting tool geometry, cutting vari-
ables (i.e., cutting depth, cutting speed, and feed rate), and
machine tool characteristics. In addition, the effect of vibra-
tion, cutting forces, and tool wear in the hard turning also
plays important role on final product quality (Wang et al.
2015). Various research attempts have been performed to
predict product quality in the past decades. Lu et al. pre-
evaluated the surface profile in turning process by training
radial basis function (RBF) neural networks under various
cutting conditions. Similar approaches have been proposed
in Lu et al. (2010), Karayel (2009), and Sizemore et al. (2020)
to estimate surface roughness using artificial neural networks
(ANN). Support vector machine (SVM)models (Çaydaş and
Ekici 2012; Jurkovic et al. 2018)were also explored to predict
surface roughness or other metrics by taking various com-
binations of machining parameters as input for the model.
These models purely rely on cutting parameters without tak-
ing into account important tool conditions, e.g. tool vibration,
hencemight not achieve high prediction accuracy and be gen-
erally applicable in different operational conditions.

Recent works further include tool vibrations (Hessainia
et al. 2013; Chen et al. 2017) and other factors such as
machining conditions (Lin et al. 2020) to predict surface
roughness when building the quality prediction model. How-
ever, most of the works simply average the vibration data,
which lack in appropriate feature extraction to uncover other
useful information in order to capture the characteristics of
the underlying vibration signal. In Aghdam et al. (2015)
and Li et al. (2017), time domain features were extracted
from time series data and investigated to build prediction
models. The authors in Grzenda and Bustillo (2019) and
Shen et al. (2020) further integrated both time and frequency
domain features to better characterize the captured data.Deep
learning techniques have also been used for product qual-
ity prediction. In recent works, Long short-term memory
(LSTM) network together with convolutional neural network
(CNN) (Lin et al. 2019) were adopted for surface roughness
prediction while convolutional encoder–decoder (Chih et al.
2020) was applied for wafer fabrication quality prediction.

Although the existing works achieve satisfying perfor-
mance in their respective applications, they work under the
same assumption that training data and testing data fol-

low the same distribution. However, in practical scenarios
machines may work under different conditions with vary-
ing data distributions for training and testing phases. As a
consequence, the model performing well during training can
deteriorate dramatically during testing, which is known as
domain shift problem. A naïve solution is to collect and
annotate data repeatedly under each new working condition,
which is expensive and apparently not a practical solution.
To cope with this problem, transfer learning approach (Pan
and Yang 2009) called domain adaptation can be adopted
to transfer the knowledge learned from one labelled operat-
ing condition (source domain) to another operating condition
without labels (target domain). The authors in Wang et al.
(2020b) initialized a deep learningmodelwith source domain
data and then gradually refined the model by taking small
amount of target domain data to reduce the prediction error.
In Wang et al. (2020a) and Zhao et al. (2020), the cross-
machine bearing fault diagnosis was addressed by transfer
learning with a little labeled data from target domain. These
promising transfer learning methods all leverage on the exis-
tence of target domain labels during training to enhance the
model performance.

In this work, we propose a framework to realize cross-
machine product quality prediction through domain adap-
tation facilitated with feature selection assuming that the
target domain labels are unknown. Time domain features
are extracted from the vibration signals and then combined
with machine condition (i.e., level of spindle unbalance) and
part geometry (i.e., surface length) to constitute the input
information. High-dimensional feature space might lead to
over-fitting hence may not properly generalize the model
when training. Moreover, although many sensors can be
installed on the machine to collect data, some could be irrel-
evant and bring noise to the learning process. To alleviate
the negative effect of high-dimensional features on model
performance, we design a feature selection approach to sys-
tematically identify important features and generate the best
feature set to characterize the vibration signals. Finally, we
leverage on domain adaptation to transform both source
domain and target domain features to new representations
and then apply machine learning methods to train model in
the source domain for use in the target domain. Through
such a method, we are able to handle domain shift problem
when machines are under different working conditions thus
dramatically enhance the model accuracy in cross-machine
product quality prediction.

The rest of the paper is organized as follows. In Sect. 2, we
first give a brief overview of the system, which is composed
of four modules. And then each module is further broken
down into details for explanation. After that we introduce
the actual manufacturing data, discuss our experiments and
demonstrate the results in Sect. 3. Section 4 summarizes this
work.
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Methodology

In this section, we introduce our proposed method for cross-
machine product quality prediction in details.

System overview

Assume that some labeled data Ds are available in the source
domain, while only unlabeled data Dt are available in the
target domain. We denote the source domain data as Ds =
{(xs1 , ys1), . . . , (xsn , ysn )}, where xsi is the input (xsi ∈ XS)

and ysi is the corresponding output. Similarly, we denote the
target domain data as Dt = {xt1 , xt2 , . . . , xtm } where xti is
the input and xti ∈ XT . Our objective is to predict yti cor-
responding to the input xti in the target domain. Let P(XS)

and P(XT ) represent the marginal distribution of XS and XT

respectively, P(XS) �= P(XT ). Assume that through a trans-
formation φ, we can find a common latent representation for
both XS and XT while preserving the data configuration of
the two domains. The transformed input sets from the source
and target domains will become X ′

S = {x ′
si } = {φ(xsi )} and

X ′
T = {x ′

ti } = {φ(xti )}. We desire that P(X ′
S) = P(X ′

T )

after transformation so that we can construct a regression
model with source domain data and apply it in the target
domain.

Our goal is to learn a regression model f in order to min-
imize the expected prediction error in the target domain. Let
‖x‖ represent the l2-norm of vector x, the target domain pre-
diction error can be denoted by eT = ‖ f (X ′

T ) − YT ‖. In the
ideal case where P(X ′

S) = P(X ′
T ), we would have eT ∝ eS ,

where eS = ‖ f (X ′
S) − YS‖. Hence reducing the error of eT

equals to reducing of eS . To minimize eS , we must select a
suitable regression model to properly approximate the rela-
tion between input and output. Meanwhile, to prevent the
model performance drop due to overfitting, we should also
pay attention to the high-dimensional feature space to remove
irrelevant features while maintaining those important ones to
characterize the data. Therefore both domain adaptation for
feature alignment and feature selection together with model
selection are essential components to achieve accurate pre-
diction.

The overall framework for cross-machine product quality
prediction is composed of four steps, which are depicted in
Fig. 1.

Each step consists of inputs, process and outputs as spec-
ified in the figure. Different colors are employed to represent
train set (blue), validation set (green) and test set (red) respec-
tively. Meanwhile, we apply different shapes to distinguish
features (dashed rectangle), labels (solid rectangle) and fea-
tures and labels together (parallelogram). Ground truth (GT)
or true target domain labels are only used in step 4 to evaluate
the model performance.

During the first step, sensory data (i.e., vibration data)
are the inputs and are fed into the system, where temporal
domain features are extracted to represent the original data
and put together with other features for feature preparation.
The outputs from step 1 are the sets of features and labels
that are split into train (TRAIN), validation (VALID) and
test (TEST) sets. It should be noted that for the test set, only
features are given while the labels are to be predicted by the
proposed system. Hence, the ground truth (GT) of the test
labels is reserved and solely used at the last step in order to
compare with the predicted values for evaluation purpose.

After pre-processing, train set and validation set, inclusive
of features and labels, are then output from the first step and
input to the second step, which targets on feature selection
through a few components (i.e., collinear feature removal,
feature assembly, feature elimination/inclusion, feature set
evaluation). For collinear feature removal, only features of
the training data (blue dashed rectangle) are used. For fea-
ture assembly and recursive feature elimination, labels of the
training data (blue solid rectangle) are required in addition to
the features for feature selection and assessment. In the last
sub-step of step 2, validation data including both features
and labels (parallelogram) are employed to evaluate the per-
formance of the feature sets selected through the past three
sub-steps in order to avoid over-fitting or under-fitting. Take
note that in this step the best regressionmodel is also selected
to achieve optimized prediction performance. Hence the out-
puts from the second step include the best regression model
(e.g. decision tree regressor, support vector regressor, etc.)
and the best selected feature set, which are denoted by M

and F respectively in Fig. 1.
In the following step, domain adaptation (i.e., transfer

component analysis (TCA) and CORrelation ALignment
(CORAL)) is applied to align the input feature distributions
of both source and target domains by minimizing the dif-
ference between them. To perform such alignment, we first
harness the immediate outcome from the previous step (i.e.,
the best feature set F identified in step 2). We apply it on
the train, validation and test features obtained from step 1 in
order to identify the best suitable features for domain adapta-
tion. In this step, the source domain includes the best selected
features of both train and validation sets whereas the target
domain includes the best selected features from the test set.
The output of this step is a new representation matrix A that
aligns source and target domains’ best selected features.

With the new representation of features from source and
target domains, we move to the last step, where prediction
model is firstly constructed to approximate the relationship
between features and labelswith source domain data and then
evaluated using target domain data. Apart from the source
and target input data, the other two key inputs in this step
are the best regression model M identified in step 2 and the
new representation matrix A resulted from step 3. For model
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Fig. 1 System overview

construction, we use source domain features (transformed
by A), source labels and model M. Once the model is con-
structed, the target domain features (transformed by A) are
input to predict the target labels. The predicted target domain
labels are then compared with the ground truth labels for
model evaluation. The outputs from this last step are the per-
formance metrics including root-mean-square error (RMSE)
and accuracy.

In the following subsections detailed explanations will be
provided for each step.

Feature extraction and dataset preparation

An important part of the input data is vibration data col-
lected from sensors installed on the machine. The vibration
data are essentially time series data and contain three orthog-
onal channels, namely ChX , ChY and ChZ . To represent the
magnitude of the vibration over all three axis, we further con-
struct the fourth channel ChA by calculating the l2-norm of
the three channels as below,

ChA =
√
Ch2X + Ch2Y + Ch2Z (1)

For each channel, nine time-domain features are extracted,
which are listed in Table 1. Take note that xi represents the
value of the i th data sample in the time-series, where i =

1, 2, . . . , N . Let m refer to a sample value of the sorted time-
series data, pm denotes the probability of m among all data
samples.

As seen in Table 1, we have included statistical time-
domain features such asmean, standard deviation, minimum,
maximum, median and quartiles as they are widely used to
identify the differences between one vibration signal and
another. To better characterize the non-stationary signal,
more advanced statistical-based features such as skewness
and kurtosis are also extracted. These features examine the
probability density function (PDF) of the underlying signal.
It is well known that when tool condition changes, the PDF
also changes, thus the skewness and kurtosis might also be
affected. In particular, skewness is used to measure whether
the signal is negatively or positively skewed, while kurtosis
measures the peak value of the PDF and indicates if the signal
is impulse in nature.

Once time-domain features are extracted from the vibra-
tion data, they are combined with other features (i.e., level
of spindle unbalance, surface length) to form complete set of
features. Two steps are further carried out here to prepare the
dataset:

1. Split of train and validation set.
Data entries have been collected from source domain and

target domain respectively, where those from target domain
will serve as test data to evaluate model performance. For the
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Table 1 List of time-domain features extracted from vibration data

Feature Brief definition Formula

μ Mean/average, which
measures the central value
of the data series

μ =
∑N

i=1 xi
N

σ Standard deviation, which
measures the amount of
variation or dispersion of
the data series

σ =
√∑N

i=1(xi−μ)2

N

xmin Minimum, which measures
the smallest value of the
data series

xmin = min
i=1,2,...,N

xi

xmax Maximum, which measures
the largest value of the
data series

xmax = max
i=1,2,...,N

xi

xmed Median, which is the
middle value separating
the higher half from the
lower half of the sorted
data series

∑xmed
m=xmin

pm = 0.5

q1 First quartile, which is the
middle value between the
smallest value and the
median of the sorted data
series

∑q1
m=xmin

pm = 0.25

q3 Third quartile, which is the
middle value between the
median and the highest
value of the sorted data
series

∑q3
m=xmin

pm = 0.75

Sk Skewness of the data series,
which measures the
asymmetry of the
probability distribution of
a random variable about
its mean

Sk =
∑N

i=1(x−μ)3)

(N−1)σ 3

Ku Kurtosis of the data series,
which measures the
tailedness of the
probability distribution of
a random variable

Ku =
∑N

i=1(x−μ)4)

(N−1)σ 4

reason of feature selection, we further split the data entries
from source domain to two subsets, namely train set and val-
idation set. It is worth to note that the split of dataset is by
random. Throughout the entire work, we always apply a ran-
dom seed value of 42 when there is a random process. So
eventually there will be three datasets (i.e., train set, valida-
tion set, test set) serving different purposes, which will be
explained in details in the following sections.

2. Normalization of train, validation and test set.
The range of values of various features may vary sig-

nificantly, which could affect the performance of machine
learning algorithms especially for those distance-basedmeth-
ods. If some of the features have a broad range of values,

the distance will be governed by these particular features.
To overcome this problem, the range of all features should
be normalized so that each feature contributes approxi-
mately proportionately to the final distance. This also benefits
gradient descent based algorithms as gradient descent can
converge much faster with feature scaling than without it. In
this work, we apply min–max normalization to rescale the
range of each feature in the train set to [a, b]. To avoid data
leakage, construction of the scaler is purely based on feature
values from train set. Let xi and x̂i represent the original and
normalized value of feature x at the i th entry respectively for
the train set, the min–max normalization is given in Eq. (2):

x̂i =
(xi − min

i∈{1,2,...,n}xi )(b − a)

max
i∈{1,2,...,n}xi − min

i∈{1,2,...,n}xi
(2)

This feature scaler is further applied on validation and test
sets to scale the feature values.

Feature selection

After feature pre-processing, we continue to feature selection
(James et al. 2013; Shao et al. 2013), which is a non-trivial
process as it hugely impacts the performance of machine
learning models. Removal of irrelevant or non-informative
features can save computational complexity for both model
training and inference. Through important features, we can
also identify those indispensable sensors hence reduce the
cost on sensor deployment for the Industrial IoT (IIoT)
applications. Meanwhile, it benefits the model accuracy by
neglecting misleading features. More importantly, it reduces
the chance of overfitting and improves the generalization
capability, which is especially useful for cross-machine prod-
uct prediction as only those essential features are preserved
to characterize the underlying signal. To accomplish feature
selection, we propose four sub-steps, which are presented as
below.

(1) Collinear feature removal
Collinear features are features that are highly correlated

with one another. In machine learning, they may lead to
decreased generalization performance due to high variance
and less model interpretability. To identify collinear features,
we calculate the correlation coefficient rxy between feature
x and feature y with the following equation:

rxy =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

(3)

where n is the total number of data entries and xi represents
the individual feature value of feature x extracted from the
i th entry. The average feature value across all the entries
is denoted by x̄ . Similar definitions apply to feature y. We
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compute the correlation coefficient repeatedly for each pair
of features in the training data and remove one redundant
feature when the correlation exceeds a pre-defined threshold.

(2) Feature assembly
In this step, we rely on feature importance scores to under-

stand how useful the input features are at predicting a target
variable. The feature importance scores can be retrieved
by fitting a prediction model on the training dataset. Each
machine learning model has its own logic to assign scores to
input features.Toborrow the computational intelligence from
different models, we apply an ensemble method, expecting
to utilize multiple learning algorithms to reduce the noise or
bias coming from any individual learning algorithm alone in
order to obtain a better feature selection performance. The
feature assembly process is illustrated in Fig. 2.

Input features and labels from training set are fed to five
different regression models that are widely used, including
linear regressor (LR), support vector regressor (SVR), deci-
sion tree regressor (DTR), random forest regressor (RFR)
(Breiman 2001) and XGBoost regressor (XGBR) (Chen and
Guestrin 2016). After fitting each regression model on the
dataset, coefficient values can be retrieved for all input fea-
tures to reflect their relative importance.We rank the features
based on these importance values from the most important to
the least important. Let topN be a constant value represent-
ing N most important features, we take out the topN features
for each model and combine them together. Given the list of
combined features, we count the frequency of each unique
feature and then sort all the features, where those with higher
frequency are given higher ranking and vice versa. The sorted
features are output for further feature elimination in the next
sub-step.

(3) Feature elimination/inclusion
To reduce feature space,we employ recursive feature elim-

ination (RFE) (Guyon et al. 2002) and recursive feature
inclusion (RFI), both of which are brute force approaches
to iteratively remove or include features. They all take the
sorted N most important features from the previous step as
inputs and outputs the best feature set after processing. Fig-
ure 3 demonstrates these two approacheswithRFE on the left
and RFI on the right. As shown in Fig. 3, RFE is a bottom-up
approach. It starts with the complete set of sorted features.
In each iteration, the least important feature is temporarily
eliminated and the correspondingmodel performance is eval-
uated. If performance drops, we bring back the eliminated
feature, else the feature will be permanently discarded. And
then we continue to evaluate the next least important feature
until all features have been examined. After the entire pro-
cess the remaining features constitute a feature set, which is
to be further evaluated.

On the contrary, RFI is a top-down approach, whichworks
in opposite direction as compared to RFE. It starts with the
set containing the most important feature only, and continu-

ously includes more features into the feature set. During the
iterations, we keep monitoring the model performance and
updating the feature set. In the end it outputs the feature set
which produces the best performance.

An important component in both RFE and RFI is perfor-
mance evaluation, which is highlighted in Fig. 3. To reduce
the bias in performance evaluation we apply K-fold cross
validation. First, we randomly split the data entries in the
train set into K subsets. Then given each candidate set of
features, we iteratively take K −1 subsets to train model and
the remaining subset to test model performance. Eventually
the average of model performance across all the K subsets
is taken to evaluate the candidate feature set. Take note that
here we use mean squared error (MSE) as criterion to mea-
sure model performance for both RFE and RFI. Dropping
on MSE corresponds to enhancement of performance. Let ŷi
and yi represent the predicted and the actual values for the
i th instance respectively, MSE is computed as below:

MSE = 1

n

n∑
i=1

(ŷi − yi )
2 (4)

(4) Feature set evaluation
Remember that we have adopted fivemost popular regres-

sion models in feature assembly. During feature elimina-
tion/inclusion, each of them learns up its own favorite feature
set. To select the best feature set and pick up the regression
model that are most suitable for the task of cross-machine
product quality prediction, we need to further carry out fea-
ture set evaluation. It should be noted that during dataset
preparation we have split the data from source domain into
train set and validation set. Train set has been used for feature
assembly and elimination, while validation set is reserved
for feature set evaluation. Given a candidate feature set, we
measure its performance by fitting each regression model
and computing theMSE based on validation set. The average
MSE across all models will be taken to evaluate the candidate
feature set. After repeating the process for all the candidate
feature sets under various models, the model together with
the feature set achieving the minimum MSE will be picked
up and output. With this best model and optimized feature
set, we can now proceed to the next step to work on domain
adaptation.

Domain adaptation for feature alignment

As mentioned, difference exists between the distributions of
source and target domain data when working under varying
machine conditions. Through domain adaptation, we aim to
adapt the regression model trained with source domain data
for use in the target domain. Intuitively, to reduce the differ-
ence in distributions while preserving important properties,
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Fig. 2 Feature assembly

Fig. 3 Flowchart of feature elimination approaches: left is RFE and right is RFI

a good feature representation across domains is crucial. To
solve this problem, we employ both TCA (Pan et al. 2010)
and CORAL (Sun et al. 2017) to learn domain invariant fea-
ture representations among different conditions.

TCA tries to learn a set of common transfer components
that capture the intrinsic structure of the original data with-
out causing distribution change across domains. Remember
that through a transformation φ, we target to find a common
latent representation for source domain input XS and tar-
get domain input XT while preserving the data configuration
of these two domains. Our objective is to look for the opti-
mal transformation φ∗ that is able to minimize the maximum
mean discrepancy (MMD) between the two domains after
transformation, where the MMD is computed as follows:

dist(X ′
S, X

′
T ) =

∥∥∥∥∥
1

n

n∑
i=1

φ(xsi ) − 1

m

m∑
i=1

φ(xti )

∥∥∥∥∥
2

(5)

With the optimal transformation φ∗, both the source
domain and the target domain features are converted to new
representations for further usage in the next step.

Similar to TCA, CORAL is another simple yet effective
method for unsupervised domain adaptation. The difference
mainly lies on the facts that: (1) CORAL aligns the original
feature distributions of the source and target domains, rather
than the bases of lower dimensional subspaces, (2) TCAmin-
imizes MMD distance between two domains while CORAL
minimizes the difference between their second-order statis-
tics. Let CS and CT denote the feature vector covariance
matrix of source domain and target domain respectively,
we apply transformation A to CS to obtain the transformed
source domain features C ′

S , whereC
′
S = ATCS A. We aim to

align the transformed source domain featuresC ′
S with the tar-

get domain features CT by minimizing the distance between
them. This distance is measured as a Frobenius Norm. The
Frobenius norm is matrix norm of a matrix defined as the
square root of the sum of the absolute squares of its elements.
Sometimes it is also called the Euclidean norm used for the
vector norm. Here our goal is to find the optimal transforma-
tion A∗ to minimize the distance, which can be formulated
as below:

A∗ = argmin
A

∥∥∥ATCS A − CT

∥∥∥
2

F
(6)

123



Journal of Intelligent Manufacturing

Oncematrix A∗ is computed, it is applied in source domain
to transform the input features to new representation. Differ-
ent from TCA, the target domain features keep still without
transformation and will be directly used in the next step for
quality prediction. Meanwhile, in both TCA and CORAL,
data labels are kept unchanged. Later on, the static labels,
together with the transformed features, are utilized in cross-
domain quality prediction to fit the regressionmodel.Wewill
elaborate on this in the next step.

Cross-domain quality prediction

From the previous step, we receive the transformed features
and the corresponding labels from source domain. They will
be used as training data to construct the regression model in
cross-domain product quality prediction.

To train the model, we can apply different kinds of regres-
sion techniques, for example, DTR, RFR, XGBR, etc. It
depends on the best model output from step 2. For exam-
ple, if decision tree is selected as the best model, training of
the model is to determine all the splitting nodes based on the
training datawith true labels. The transformed source domain
features together with the true labels are fed into the model.
To split the node when the target variable is a continuous
value, we use mean squared error as criteria to measure the
quality of a split. For each split, the MSE of each child node
is calculated individually. And then we compute the MSE
of each split as the weighted average MSE of child nodes.
The split with the lowest MSE will be selected. The splitting
will be repeated until completely homogeneous nodes are
achieved.

With this constructed prediction model, we bring in the
target domain features received from the previous step to
infer the product quality. When TCA is adopted, the target
domain features are in transformed representation. While for
CORAL, the original target domain features are utilized for
quality prediction. Once we feed in the target domain fea-
tures into the regression model, it will output the predicted
quality. Given the predicted values and the actual labels, we
can continue to compute the generalization error to examine
the performance of the regression model. In this work, two
metrics are used to evaluate the model performance, namely
RMSE and accuracy. The RMSE is the square root of MSE,
whereMSEmeasures the average of the squares of the errors.
It reflects both the variance of the estimator (how widely
spread the estimates are) and its bias (how far away the aver-
age estimated value is from the actual value). The calculation
for RMSE is given in Eq. (7).

RMSE = √
MSE =

√√√√1

n

n∑
i=1

(ŷi − yi )2 (7)

Meanwhile, the accuracy is a normalized value tomeasure
the closeness of the estimated value to the actual value. It is
calculated based on mean absolute percentage error (MAPE)
in Eq. (8).

Accuracy = 1 − MAPE = 1 − 1

n

n∑
i=1

∣∣ŷi − yi
∣∣

yi
(8)

Experiment

To verify the effectiveness of the proposed framework,
we collected actual manufacturing data from CNC cutting
machines with prototype IoT setup. Based on the data col-
lected, predictionmodelswere built and the performancewas
evaluated accordingly. In the following subsections, we will
describe the dataset together with the experiment setup, and
demonstrate the experimental results under different settings.

Dataset

To simulate possible machine tool condition that might lead
to machined product quality degradation, unequal amount
of force is imposed on the spindle during machining. The
spindle unbalance level is categorized into 3 different levels
(namely, low, medium and large) based on the machining
expert’s recommendation. Under each category, the machin-
ing process was repeated 5 times, each time producing a new
machined part. The part contains three surfaces with varying
lengths. For each surface, the product quality in terms of pro-
file accuracy is measured after machining. Same settings are
applied when collecting data from two different machines,
namely NLX 2500 and NTX 1000, with NLX 2500 being the
source domain while NTX 1000 being the target domain.

The sensory data were collected from vibration sensors
that are installed on the main spindle’s front bearing and
rear bearing with a sampling frequency at 25.6 kHz through-
out the cutting process. As mentioned, the data captured by
a vibration sensor are essentially time series data. They are
further split into small segments, each of which is one second
long. Assuming that segments from the same surface share
uniform quality, we label them with same score that was
measured over the entire surface. This allows us to get more
data entries to benefit both domain adaptation and modeling.
After doing this, we generate 1088 instances from source
domain and 876 instances from target domain. It should be
reminded that the vibration data contain three orthogonal
channels inherently and the fourth channel is calculated as
the l2-norm of the three channels to represent the magnitude
of the vibration over all three axis. Hence there are altogether
four channels in the time series collected from one sensor.
For each channel, we extract nine time-domain features as
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explained in Sect. 2.2. Considering that there are two sensors
installed on front and rear bearings of themachine, overall we
will have 2×4×9 = 72 time-domain features extracted from
thevibrationdata.Besides,we also include spindle unbalance
and surface length as input features. Spindle unbalance is cat-
egorical datawith three categories (small,mediumand large).
This variable is further converted into three dummy/indicator
variables in the form of numerical values, so finally we have
72 + 3 + 1 = 76 features in the complete dataset.

Bearing in mind that validation data are necessary for fea-
ture selection, we split the source domain data into train set
and validation set by setting the random seed value to 42 and
allocate 20% for validation purpose. Hence in total we have
870 data entries in the train set, 218 data entries in the vali-
dation set, while all the 876 data entries from target domain
are used as test data.

Experimental results

Results for feature selection

An essential part in our proposed framework is feature selec-
tion. There are a few steps comprised in feature selection to
play different roles, each of which constitutes a variable in
the system hence has varying impact on the results when hav-
ing different settings. Next we will analyze the experimental
results from different angles with different settings.

During feature selection, the first step is to remove
col-linear features, where the correlation coefficient rxy is
calculated for any pair of features and compared with a
pre-defined threshold rT H . If rxy hits or exceeds rT H , the col-
linear feature will be removed to reduce the feature space. In
the experiments, we set the threshold to 0.9 and 1.0 respec-
tively to test performance. We carry out the experiments
by following step 1 and step 2 in the proposed framework.
Different regression models select different features based
on their own logic. Once features are selected, we fit each
regression model using the training dataset based on its own
selected features and then evaluate model performance using
the validation set. Table 2 shows the comparison results for
different models under different settings of rT H . In the table,
we demonstrate model performance in terms of RMSE and
accuracy. It can be observed that when setting the col-linear
threshold to 1.0 all the models consistently perform better
than those with 0.9 as threshold. It indicates that it is prefer-
able not to remove any highly correlated features. This is
reasonable as the feature amount is not that much in this
experiment due to limited number of sensors (i.e., front bear-
ing sensor and rear bearing sensor only) installed for data
collection. For applications with more sensors, it could be
necessary to remove highly correlated features to benefit the
performance. Hence we suggest to keep this process in fea-
ture selection.

Table 2 Comparison of performance when applying different collinear
threshold for different regression models (topN = 30, RFE)

Model rRH = 0.9 rRH = 1.0

RMSE Accuracy (%) RMSE Accuracy (%)

LR 0.759 88.5 0.715 88.8

SVR 0.800 89.4 0.774 89.5

DTR 0.521 96.0 0.404 96.9

RFR 0.442 95.4 0.406 95.8

XGBR 0.431 95.0 0.416 95.2

Table 3 Comparisonof performancewith andwithout feature assembly
for different regression models (rT H = 1.0, topN = 30, RFE)

Model W/o Feature assembly With feature assembly

RMSE Accuracy (%) RMSE Accuracy (%)

LR 0.736 89.0 0.715 88.8

SVR 0.795 89.2 0.774 89.5

DTR 0.437 96.4 0.404 96.9

RFR 0.403 95.6 0.406 95.8

XGBR 0.434 95.0 0.416 95.2

Another important operation in feature selection is fea-
ture assembly, which is an ensemble method to combine top
features learned by various models. We have also attempted
to examine the importance of feature assembly. Same as the
previous experiment, we follow the same setting for majority
of the steps while the only difference is the on and off for
feature assembly.When feature assembly is turned off, we fit
a regressionmodel by taking all the input features from step 1
and rank features based on importance. And then the ranked
features will continue with feature elimination/inclusion.

As shown in Table 3, adoption of feature assembly
improves the model performance in general. If we focus on
model accuracy, the only exception is LR, where the accu-
racy drops 0.2% when feature assembly is incorporated into
the procedure. However, if we further take a look at RMSE,
it was reduced from 0.736 to 0.715, which implies a slight
performance enhancement. Given this, it would be safe to
conclude that feature assembly helps to identify more impor-
tant features and leads to better feature selection results.

During feature assembly, we need to define the value of
topN in order to take out the Nmost important features under
each regression model and combine them together. In the
experiments, we set this value to 10, 20 and 30 respectively
and compare the results in Table 4. To help understand the
pattern more intuitively, we also plot the results on accuracy
inFig. 4. In general, greater topNvalues receive better results.
If further comparing topN = 20 with topN = 30, majority
of time topN = 30 achieves similar or better performance.

123



Journal of Intelligent Manufacturing

Table 4 Comparison of
performance with different topN
values under various regression
models (rT H = 1.0, RFE)

Model topN = 10 topN = 20 topN = 30

RMSE Accuracy (%) RMSE Accuracy (%) RMSE Accuracy (%)

LR 0.728 88.70 0.708 88.80 0.715 88.80

SVR 0.781 89.30 0.797 89.40 0.774 89.50

DTR 0.447 96.00 0.437 96.40 0.404 96.90

RFR 0.419 95.60 0.406 95.80 0.406 95.80

XGBR 0.448 95.10 0.412 95.50 0.416 95.20

Fig. 4 Comparison on model accuracy when setting different topN
values for feature assembly

Table 5 Comparison between recursive feature inclusion and recur-
sive feature elimination for different regression models (rT H = 1.0,
topN = 30)

Model RFI RFE

RMSE Accuracy (%) RMSE Accuracy (%)

LR 0.739 88.9 0.715 88.8

SVR 0.779 89.4 0.774 89.5

DTR 0.447 96.4 0.404 96.9

RFR 0.402 95.9 0.406 95.8

XGBR 0.420 94.9 0.416 95.2

Hence, in the rest of the experiments, we stick to topN = 30
for feature assembly.

The last aspect we would like to look into is feature
elimination/inclusion. Remember that we have proposed one
top-downapproach (RFI) andonebottom-up approach (RFE)
to iteratively include or eliminate features.Wealso conducted
experiments to compare these two methods and the results
are given in Table 5. It can be observed that RFE and RFI
achieve very similar results in terms of accuracy, where RFE
is slightly better than RFI in average. After further exami-
nation on RMSE, we can notice that the advantage of RFE
becomes more obvious.

In the last sub-step of feature selection, we evaluate the
performance under each regression model so that the best

model will be identified together with its selected feature set.
Referring to the above results, obviously decision tree regres-
sor performs best among all on the validation set. Keeping in
mind those selected features by DTR, we slice out the cor-
responding feature sets from source domain data and target
domain data respectively. Domain adaptation is further car-
ried out to minimize the distance between these two domains
by transforming the features to new representations. We then
fit the decision tree regressor with the transformed features
from source domain and evaluate the model performance
using target domain data.

Results for domain adaptation

To have a thorough understanding of the contribution of each
component (i.e., feature selection, domain adaptation), we
have examined various combinations of feature selection and
domain adaptation. Themodel performance in terms of accu-
racy using decision tree regressor is demonstrated in Table 6.
The first two methods are conventional approaches, both of
which do not adopt domain adaptation. They simply train
the regression model using decision tree with the original
source domain data and then infer the product quality for the
target domain. The first method takes in the entire input fea-
tures without selection during model training. As expected,
the performance is not ideal as the accuracy can only reach
77.4%. When feature selection is switched on in the second
method, we observe more than 4% improvement on predic-
tion accuracy.Meanwhile,we also evaluated the performance
of transfer learning methods by turning on domain adapta-
tion without feature selection. With TCA, the accuracy is
slightly enhanced by 1.2%. Greater enhancement is achieved
byCORAL,which increases the accuracy by 11%. Lastly, we
test our proposed method by enabling both feature selection
and domain adaptation and the performance is significantly
improved. If taking conventional method as reference, the
increase is up to 11% by using TCA while for CORAL it is
about 16%.With the facilitation from feature selection, accu-
racy enhances 5–10% or so as compared to that achieved by
domain adaptation itself. Experiments are extended to RFR
andXGBRand the comparison results are illustrated inFig. 5.
We can observe similar trends that feature selection slightly
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Table 6 Comparison on
accuracy using DTR under
different mode of feature
selection and domain adaptation

Method Feature selection Domain adaptation Accuracy (%)

Decision tree Off Off 77.4

Decision tree On Off 81.8

Decision tree with TCA Off On (TCA) 78.6

Proposed method with TCA On On (TCA) 88.4

Decision tree with CORAL Off On (CORAL) 88.4

Proposed method with CORAL On On (CORAL) 93.3

Fig. 5 Comparison on accuracy with RFR and XGBR under different
mode of feature selection and domain adaptation

enhances the model accuracy as compared to conventional
approach. Further integration of domain adaptation dramat-
ically improves the performance especially when CORAL
is adopted. These results demonstrate the superiority of the
proposed framework and prove the efficacy of both feature
selection and domain adaptation for cross-machine product
quality prediction.

Conclusion and future work

In this work, we addressed a more challenging yet prac-
tical problem of predicting product quality under varying
machines. We developed an end-to-end framework leverag-
ing on IoT sensory data and machine learning and domain
adaptation techniques. Different from traditional methods,
the proposed method incorporated systematic feature selec-
tion approach to generate more suitable feature subset to
characterize the collected data in order to facilitate domain
adaptation and further mitigate the domain shift problem.
The framework is demonstrated and evaluated in experiments
using actualmanufacturing data collected fromvibration sen-
sors. Experimental results showed that the proposed method
significantly outperforms the conventional techniques,which
demonstrate the effectiveness of domain adaptation for qual-
ity prediction across different machines. In the future, we
would further explore GAN-based domain adaptation tech-

niques (Huang et al. 2018;Wilson andCook2020) to evaluate
their effectiveness in such applications.
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