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Abstract—3D object recognition is a well studied 2D multi-view
object classification task that achieves high accuracy if the object
textures are distinctive. However, if objects are texture-less and
are only differentiable by their shapes but at certain viewpoints.
Thus, the problem is still very challenging. Furthermore, the
existing methods are mostly based on supervised learning with
lots of images per object which are difficult to collect and label
them for training. In this letter, we introduced a multi-loss
view invariant stochastic prototype embedding to minimize and
improve the recognition accuracy of novel objects at different
viewpoints by using a progressive multi-view learning approach.
An extensive experimental results show that the proposed method
outperforms the state-of-the-art methods on different types
datasets and also on different backbones.

Index Terms—3D Unseen Learning, DCNN, Progressive Multi-
view Learning, Object Detection, Self-Supervised Learning

I. INTRODUCTION

AS we know, objects in real world are represented in a 3-
dimensional space while the current visual intelligence is

mostly tested on 2-dimensional images that are captured from
different views of object [1], [2]. Thanks to deep convolutional
neural network (DCNN), which rapidly encapsulated computer
vision (CV) in supervised learning and achieve human-level
performance to some tasks [3], [4]. However, despite of
DCNN’s great success in the field of vision [5], [6], [4], using
2D images to recognize 3D objects is still challenging due to
viewpoint variation in shapes. In real vision system, as stated
in [1], the viewer-centered representation plays a vital role in
object level recognition and so are mostly followed by several
psychophysical and computational researchers [7], [8], [9].

In digital CV, to obtain 3D object recognition there are
several multi-view attempts for object recognition. In past,
author try to aggregate the features obtained from multiple
views either by using recurrent neural networks [10] or by
integrating graph with other modalities [11], [12]. In practice,
it’s not always feasible to obtain a dense view of 3D object
which covers all the visual aspects of it. There are researchers
focusing on the missing viewpoints for recognition in infer-
ence phase while a complete view set is assumed for training
[13]. These approaches works very well on the seen classes
but suppressively performances for the unseen categories [11].

The industrial or mechanical parts are mostly texture-less
and sometimes even the shapes are similar. For example,
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washers may only vary in their dimension. On the other
hand, in many real world applications it’s not always possible
to re-train the network whenever a new product, part or
design is released. Therefore, a prior knowledge of feature
representation of similar objects will ease the recognition
deployment process. This is usually resolved via embedded
learning where the unseen classes are well patterned for
classification. However, the images used for training are not
evenly sampled from all the possible viewpoints of an object,
thus the viewpoint difference between the training and testing
sets will affect the existing system’s performance. To code
this, multi-view self-supervised learning (MVSSL), zero-shot
learning (ZSL) or learning from side information are used by
[14], [15].

To fathom above problems, Ho et al. has introduced a
lightweight unsupervised multi-view object recognition em-
bedding using MVSSL which they termed as view invariant
stochastic prototype embedding (VISPE) [14]. They proposed
a randomizer where softmax parameters are sampled stochasti-
cally from the embedding space of the object’s viewpoint dur-
ing the training, which suppose to simplify the embedding. The
randomization in VISPE actually complemented the invariants
and enable the classifier to remain stable whatever the view-
point is. However, we found that the 3D object representations
are still not robust for both seen and unseen classes. A special
attention mechanism is required to deal with such multi-view
object representation. In this letter, we introduce a classroom-
based multi-loss function to optimize the multi-view object
representation and improve the recognition performance.

Furthermore, we optimize the deep feature embedding
which is suitable to represent unseen objects and thus we
improve the embedding space by introducing a progressive
multi-view learning approach. An extensive ablation studies on
popular datasets prove that our methods are able to make the
network converge faster and show a significant improvement
in terms of recognition and computational cost. We further
used the largest mechanical components benchmark (MCB)
dataset [16] for novel 3D object recognition and found a con-
sequential improvement. Lastly, we investigate our hypothesis
over various state-of-the-art (SOTA) deep networks that are
used for image classification.

In this letter, the further sections are arranged as below:
Section 2 reviews the related work which is then followed
by the proposed method and the serious of experiments that
are performed on different datasets in Sections 3 and 4,
respectively. The letter is then summarized with the key future
works in Section 5.
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II. RELATED WORK

This segment briefly highlights few prior works related
to multi-view object recognition that includes ZSL, context-
aware and knowledge graph based recognition, multi-view
recognition (MVR) and self-supervised learning (SSL).

A. Zero-Shot Learning
A wide group of researchers working on using external

knowledge based ZSL to learn visual representation of unseen
object classes [17], [18]. In addition to ZS recognition, ZS
detection is also explored widely, aiming to localize objects
that are never seen before [19]. Among various ZS approaches,
some focus on proposal generation and some on loss op-
timization for novel categories. Cacheux et al. used ZSL
for object recognition in deep feature space with various
tricks [20]. Inspite of getting a satisfactory performance, ZS
recognition and detection tasks are still limited in terms of
context information in scenes.

B. Context-aware and Knowledge Graph Based Recognition
In traditional object detection, context plays major role

before DCNN [21], [22], [23]. Whereas for weakly-supervised
object detection, researcher uses common-sense based knowl-
edge graph to optimize the detector [24]. These graph-based
NNs often propagate information over the knowledge graph
[25]. Such methods are mostly designed for fully-supervised
settings and therefore cannot be directly applied to ZS envi-
ronment.

C. Multi-view Recognition
As we know, multi-view recognition is a 2D image-based

object recognition task which takes multiple views of an
object and perform feature embedding using DCNN such
as MVCNN [26] and MLVCNN [27]. These approaches are
highly supervised and observed that the viewpoints are inter-
related. Thus, recurrent NNs and graph-based DCNNs were
proposed by [28] and [11] to resolve the above issues. But it
is observed that such methods experience performance drop
when partial views are included in inference which to some
extent is decoded by considering views as an intermediate
state or hierarchical embedding [14]. Therefore, in this letter
we include partial viewpoints progressively for training which
relax the above constraints, to some extent and enhances the
recognition performance (see Section 4).

D. Self-Supervised Learning
In SSL, context-based, motion-based, sequence-based and

view-based object recognition methods are now widely im-
ported in deep learning [29]. In cluster-based SSL methods,
data are grouped with some visual similarities into clusters
which discriminates them [30]. In this approaches, the feature
maps are updated once per epoch that might be a noisy
generalization for 3D object recognition due to viewpoints.
Therefore, multiple views are used to avoid this problem
[14]. This letter optimization the multi-view embedding by
introducing progressive multi-view learning. This proposed
approach also helps in reducing the overall training cost.

III. PROPOSED METHODOLOGY

In this section, we detailed our proposed progressive multi-
view embedded learning approach to optimize the overall
performance of multi-view unseen object recognition by intro-
ducing a new classroom-based multi-loss concept. The overall
flow-chart of the proposed concept is shown in Figure 1.

Fig. 1: The overview of our proposed approach.

A. Problem Definition

According to Ho et al. [14], the goal of light weight
unsupervised multi-view object recognition is to learn the
embedding in such a way that it can recognize new objects and
new set of views of an objects Ok = {oi}k, where oi is the i-
th object instance of k-th object. In DCNN-based embedding,
the parameters θ are optimized by minimizing the risk factor
R over N images in dataset D:

R =
∑
i,j

−log
expwT

i fθ(x)∑N
k=1 expw

T
k fθ(x)

(1)

In softmax-based DCNN, the learning feature fθ for image x
is generally limited to the seen classes and therefore, metric
learning based embeddings are more emphasized for unseen
objects [31]. However, they agonize sample pairings in D
and thus, requires a dedicated sampling methods which are
hard to converge. Ho et al. used a randomization technique
in multi-view datasets which actually updates the embedding
along with the task, leading to a good embedding feature. This
generalization is very useful for the unseen categories to learn
instance classifier parameters wi in Eq. 1.

The next challenge in 3D object recognition is that the
embedding images of the same object are not very tightly
clustered and so can be confused by other class(es). For this,
a normalized embedding space is practised, i.e., (fθ(x) →
||fθ(x)||2 = 1) [14]. Thus, the weights in Eq. 1 can be
replaced by randomly selected object’s view embedding for
the instance oi. Hence, the softmax can be re-written as:

R =
exp fθ(x

vi
i )T fθ(x)/τ∑N

k=1 exp fθ(x
vi
i )T fθ(x)/τ

(2)

where τ controls the sharpness of posterior distribution and
viϵ{1, 2, ...Vi} is the view sampler per object instance i.

Further, the view invariant embedding is strengthened by
minimizing the magnitude of variations in distribution which
is the ultimate measure of view sensitivity. That is, if the
distribution (Eq. 1) remains stable with the set of prototype, the
embedding becomes more stronger. In [14], Kullback-Leibler
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(a) (b) (c) (d)

Fig. 2: Comparison graphs for seen and unseen classes (a-b) and the improvement vs computation cost (c) for ModelNet40
test set is shown; and (d) shows with and without progressive multi-view learning for MCB-A. For best view, zoom 400%.

(KL) divergence is used to minimized this and so termed as
VISPE.

Finally, the risk of classifying a training view xj
ηi

of object
instance label ηi of prototype set s′pϵS|s′ = {fvηi

ηi }mk=1, is
defined as:

Ls′p(i, j) = −log(P
s′p
Y |X(ηi|xj

ηi
)) (3)

where p = {1, 2}. Using similar notations, the KL divergence
is defined as:

LKL =

m∑
k=1

P s′1(k|xj
ηi
)log(

P s′1(k|xj
ηi
)

P s′2(k|xj
ηi)

) (4)

Therefore, the cumulative training loss L for (xj
ηi
, ηi),

iϵ{1, 2, ...m}, jϵ{1, 2, ...Vηi} is defined as:

L = Lsp + αLKL (5)

B. Multi-loss Optimization
In 3D object recognition, it is observed that the learning

curve highly depends upon the random selection of viewpoints
per object instance oi, which is the advantage of VISPE but
can fail if wrongly selected. Therefore, a classroom-based
approach is introduced in this letter, where randomly selected
students of different learning capabilities for same task are
trying to fetch identical information to compute a global loss.
This multi-loss will enable DCNN to converge much faster
compared to VISPE by every time selecting the best minimum
error per epoch. Hence, the stochastic gradient descent (SGD)
loss (Eq. 5) is transformed as:

L = F(Lγ
sp + αLγ

KL) (6)

where γϵ{1, 2, ...r} is the number of students in a classroom
and F is the selection criteria to determine the best student
for set sp with random multi-views from D. Note, since the
same shared feature maps are used by all students, there is
no additional computation cost involved. In our case, we set
the selection function as F = min(.), i.e., the best student
with the minimum error is selected to update w. The best
feature fθ obtained from Eq. 6, reduces the overall training
cost by converging faster. The approach also assist network
to recognize the unseen object instances and boosts up the
baseline performance (see Table I). In our classroom, we have
cross-entropy, negative log likelihood and KL divergence loss
functions, i.e., γ = 3. But it is scalable and can further grow
(see Figure 1).

C. Progressive Multi-view Learning

We observed that increasing viewpoints of an object highly
influence the learning of deep feature embedding. In con-
ventional training, after certain epochs the learning curve
gets saturated. Thus, in this letter we introduce a progressive
multi-view learning approach to minimize gradient vanishing
problem and further optimize the object representation. For
this, we split MCB-A dataset in four different subsets of
viewpoints: 4-views D1 ⊂ 6-views D2 ⊂ 8-views D3 ⊂ 12-
views D. We fixed the training subset Di as the initial data
and then progressively increase to Di+1 whenever the learning
curve gets soaked. Here, i is the number of view subsets,
which in our case is four. This progressive multi-view learning
actually saves the training cost. That is, instead of training fθ
on D for e epochs, we split it’s training set in such as way
that the previous subset’s trained weights act as the initializer
for the successive subsets.

Implementation All experiments were conducted in Py-
torch1 and used a standard SGD with learning rate λ = 0.001,
batch size m = 32, τ = 0.05 and α = 5. The network was
trained over for max epoch e = 150, which is half of [14].

IV. EXPERIMENTS AND RESULTS

In this section, we evaluate different SSL algorithms on two
different types of 3D object recognition datasets and perform
rigorous experiments to validate our hypothesis.

A. Datasets

Two different types of datasets are used in all further
experiments: ModelNet40 [32] and MCB-A [16].

ModelNet40 is a 3D CAD dataset of 40 objects, in total
3,183 models. We followed VISPE, where 10 classes are
subjected as unseen and rest other settings are kept the same,
as in [14]. ModelNet-c20 is a subset of ModelNet40 with
additional 10 unseen classes: bowl, cone, cup, laptop, plant,
radio, sink, stool, vase, and xbox. This dataset is created to test
robustness of our hypothesis when novel objects are increased.

Mechanical Components Benchmark (MCB-A)2 is the
newest and largest annotated 3D CAD MCB dataset for
classification and retrieval tasks. It has a total of 58,696
mechanical components under 68 classes which are aggregated

1PyTorch: https://pytorch.org/
2MCB-A dataset: https://mechanical-components.herokuapp.com/
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TABLE I: Classification comparison with SOTA. *Results are
carried from [14] and ’–’ means result unknown.

Methods/Dataset ModelNet40 Backboneseen unseen
Pretrained*, 2014 62.7 52.7 VGG-16

Autoencoder*, 2016 31.8 37.2 –
Egomotion*, 2015 32.4 34.7 BCNN

Puzzle*, 2016 34.4 41.5 CFN
ShapeCode*, 2017 39.4 46.5 VGG-16
MVCNN*, 2015 39.6 48.1 VGG-VD

UEL*, 2019 47.9 46.5 ResNet-18
Instance classification* 57.7 58.9 VGG-16

Triplet*, 2015 70.1 62.4 –
PE, 2020 [14] 69.7 61.7 VGG-16

MVSPE, 2020 [14] 70.3 63.2 VGG-16
VISPE, 2020 [14] 71.2 64.4 VGG-16

improved VISPE (multi-loss) 79.0 73.3 VGG-16
improved VISPE (backbone) 78.7 74.0 ResNet-18
improved VISPE (multi-loss) 79.1 74.0 ResNet-18
improved VISPE (backbone) 74.0 71.2 iResNet-18 [33]
improved VISPE (multi-loss) 74.3 71.2 iResNet-18 [33]
improved VISPE (backbone) 80.3 72.3 EfficientNet-b0
improved VISPE (multi-loss) 81.5 73.0 EfficientNet-b0

Methods/Datasets ModelNet-c20 Backboneseen unseen
VISPE [14] 80.2 66.4 VGG-16

improved VISPE (backbone) 82.9 68.6 ResNet-18
improved VISPE (multi-loss) 83.0 70.2 ResNet-18

Methods/Datasets MCB-A 12-views Backboneseen unseen
VISPE, 2020 [14] 60.6 60.2 VGG-16

improved VISPE (multi-loss) 62.6 63.2 VGG-16
improved VISPE (backbone) 64.5 66.7 ResNet-18
improved VISPE (multi-loss) 65.4 65.7 ResNet-18
improved VISPE (backbone) 62.2 63.7 EfficientNet-b0
improved VISPE (multi-loss) 64.7 65.4 EfficientNet-b0
Note: Word improved means either new backbone or backbone + multi-loss.

from TraceParts, 3DWarehouse and GrabCAD. This dataset
is highly imbalanced and therefore, are more challenging for
seen/unseen object recognition task, compared to ModelNet40
dataset. Since the dataset is used for classification, we manu-
ally split out 12 unseen categories. The training and testing set
involves 38 and 9 instances per objects. The unseen classes
are: Castor, Clamps, Fan, Hinge, Knob, Nozzle, Pulleys, Roll
pins, Springs, Studs, Toothed and Wheel.

B. Recognition and Comparison

We followed the same training and testing distribution
as of [14]. For inference, we use k-nearest neighbors (NN)
classification where k is set to 960 for ModelNet40 while for
MCB-A and ModelNet-c20 datasets, we set it to 456 and 500,
respectively. The results are averaged over three runs.

SOTA Comparison. Table I shows a detailed k-NN clas-
sification comparison for ModelNet40, ModelNet-c20 and
MCB-A datasets. It is observed that the proposed method
outperforms the SOTA methods for all considered datasets. Es-
pecially, our result shows an improvement for unseen classes.
Noticeably, the complex EfficientNet-b0 and ResNet-18 ar-
chitectures along with classroom-based multi-loss function re-
spectively boosts the performance of ModelNet40 compared to
simple VGG-16 by 10.3% and 7.9% for seen categories while
for unseen classes, it’s 8.6% and 9.6% for EfficientNet-b0
and ResNet-18, respectively. Secondly, the proposed approach
is trained for 150 epochs which can significantly up-lift the
performance compared to VISPE (baseline), which was trained
for 300 epochs. Thirdly, for 3D object recognition ResNet-18
performs better compared to iResNet-18 [33].

Similarly for ModelNet-c20 and MCB-A datasets, our pro-
posed method improves the performance significantly for both
seen and unseen categories. The result on ModelNet-c20
proves that multi-loss with complex architecture learns a better
representation to distinguish unseen classes, even when they

are increased. For MCB-A dataset, our proposed approach
achieves 65.4% for 56 seen classes and 66.7% for 12 unseen
categories (Table I). That is, the higher the γ is, the better
the convergence speed will be, depending up on the type of
loss functions selected. Since original MCB-A was used for
supervised tasks, here we use it for our ablation studies.

Architecture Comparison. Next, Figure 2a-b shows a com-
parison of seen and unseen classes per epochs on ModelNet40
for different backbone networks. Figure 2c shows improve-
ment comparison of different network’s performance over their
computational cost, in terms of FLOPS and parameters. From
these graphs, it is clear that the proposed approach of multi-
loss based object recognition is promising as it improves the
overall training performance for almost all SOTA networks.

Progressive Multi-view. Lastly, we trained the proposed
model using our progressive multi-view learning approach
with m = 32 and b = m/2, as defined previously. The
accuracy per epoch on MCB-A is shown in Figure 2d, where
we can see that after few epoch of learning the view angles are
increased for all objects in D. This results in a better embed-
ding without vanishing gradient issue. For seen categories the
accuracy reaches to 65.6% and for unseen its 68.1% which
is 0.2% and 2.4% high compared to multi-loss approach with
ResNet-18. Not only this, the proposed learning approach also
reduces the overall training cost by a factor of ≈42.8%3.

k-shot Object Recognition. The proposed concept is inher-
ited for k-shot object recognition to test the generalizability of
different embeddings. The classification accuracy for unseen
classes with k images per object for ModelNet40 is tested
and the proposed multi-loss approach achieves 45.8%@1 and
59.1%@3 compared to 43.1%@1 and 52.5%@3 from VISPE
[14]. Thus, the proposed multi-loss significantly improves the
performance and can be further explored in ZSL.

C. Discussion

Based on the above experiments, we analysed that for multi-
view unseen object recognition a complex architecture is the
best choice compared to a simple liner structure. Secondly,
we examined that classroom-based multi-loss training strategy
converges the network much faster and gives a significant
boost in the performance by 6-8% in case of VGG-16 while 2-
4% for complex architecture. Lastly, the proposed progressive
learning is generic and can further reduce the training cost of
various SOTA networks.

V. CONCLUSION AND FUTURE WORKS

In this letter, we proposed a multi-loss based progressive
multi-view learning approach for 3D object recognition. The
proposed method boosts the network learning capability and
converges must faster (≈42%) with a significant performance
improvement. The extensive experiment shows significant en-
hancements on all types of considered datasets and DCNN
architectures. In future, we would like to further optimize the
learning curve with minimal number of learning parameters.

3Training cost (epoch×D): 1. Conversional approach ≈ e×D = 150×D
2. Our ≈ (ei × D1 + e2 × D2 + e3 × D3 + e4 × D) — e.g., in our case
ei =

Di
D then ≈ (9.9 + 25 + 38.86 + 12)×D = 85.76×D, (Figure 2d).
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