
Enhancing Robustness of Malware Detection
using Synthetically-adversarial Samples

Wee Ling Tan∗† and Tram Truong-Huu†
∗Department of Mathematics, National University of Singapore, Singapore

†Institute for Infocomm Research (I2R), Agency for Science, Technology and Research (A*STAR), Singapore
Email: weelingtan@u.nus.edu, tram.truong-huu@ieee.org

Abstract—Malware detection is a critical task in cybersecurity
to protect computers and networks from malicious activities
arising from malicious software. With the emergence of machine
learning and especially deep learning, many malware detec-
tion models (malware classifiers) have been developed to learn
features of malware samples collected from static or dynamic
analysis. However, these classifiers experience a deterioration
in performance (e.g., detection accuracy) over time due to the
changes in the distribution of malware samples. Leveraging the
positive aspects of adversarial samples, we aim at enhancing the
robustness of malware classifiers using synthetically-adversarial
samples. We develop Generative Adversarial Networks (GANs)
that learn to generate not only malicious samples but also benign
samples to enrich the training set of a baseline malware classifier.
We improve the performance of the developed GANs by incor-
porating a relativistic discriminator and the cosine margin loss
function such that quasi-realistic samples can be generated. We
carry out extensive experiments with publicly available malware
samples to evaluate the performance of the proposed approach.
The experimental results show that without synthetic samples in
the training set, the baseline classifier experiences a drop in its
detection accuracy by up to 18.20% when evaluated against a
test set that includes synthetic samples. By introducing synthetic
samples into the training set and retraining the classifier, the
improvement in detection accuracy not only compensates the
drop but also increases further by up to 4.15%.

Keywords—Malware detection, deep learning, generative ad-
versarial networks (GANs), adversarial samples

I. INTRODUCTION

A malicious software, or malware, is an application whose
developers or senders have a deliberate malicious intent to
cause harm to a destination system. These include destroying
files, stealing personal and sensitive information, extorting a
payment, penetrating networks, and crippling critical infras-
tructures, etc. In 2016, Cybersecurity Ventures1 estimated that
the total damage due to malware attacks was $3 trillion in 2015
and is expected to reach $6 trillion by 2021. Malware detection
and attack defense is thus a critical task in cybersecurity.

Many antivirus software such as Norton, McAfee, Avast,
Kaspersky, AVG, Bitdefender, etc. have been developed to
protect computer systems and networks against the prolifer-
ation of malware samples and attacks. To detect malware,
these antivirus software conventionally use a signature-based
approach that utilizes a sequence of bytes referred to as signa-
ture to identify known malware. Due to the rapid evolution of
malware and the development of malware generation toolkits
such as Zeus [1], many variants of the same malware can be

1https://cybersecurityventures.com/hackerpocalypse-cybercrime-report-2016

generated in a short time by using different obfuscation tech-
niques. As a result, newly-developed malware samples may
not be detected since their signature has not been generated
at the moment they compromise a system. Furthermore, such
a signature generation process is normally driven by a human
process, which faces the problem of scalability if the number
of new malware samples increases exponentially [2].

With the emergence of machine learning and deep learning,
many techniques have been developed to perform malware
detection [3], [4]. These techniques utilize features that are
extracted from malware samples using two common tech-
niques: static analysis and dynamic analysis. In static analysis,
samples are not executed and features such as opcodes [5] or
byte-level n-grams [6] are extracted using reverse engineering
tools such as IDA Pro2 and Binary Ninja3. Models based on
static analysis can be fooled by obfuscation techniques. In
dynamic analysis, samples have to be executed in a controlled
environment such as Cuckoo Sandbox4 and dynamic behaviors
such as API calls [3] are extracted. However, extracted features
may not accurately represent true malicious behavior of the
samples as they may alter their behavior upon detecting that
they are being executed in a controlled environment.

There exist other deep learning models, which use image
processing techniques to perform malware detection [7], [8].
These works convert the samples into grayscale images and
subsequently use convolutional neural networks to classify
the images into the benign or malicious class. Nevertheless,
these models experience a deterioration in performance over
time due to newly-developed malware samples that result in
different images. To maintain the performance of these models,
one could collect as many new malware samples as possible
in a timely manner to retrain these models. However, this
is a time-consuming task and there may not be a secure
infrastructure to do so. Thus, there is an increasing need
for a novel technique that is able to efficiently enhance the
robustness of deep learning-based malware detection models.

In this paper, we develop such a technique by leveraging
on Generative Adversarial Networks (GANs) [9]. With the
ability to generate new synthetic images that are similar to
real images in the training dataset, GANs are able to enrich
the training dataset of a baseline malware classifier with new
synthetic malware samples. The contribution of our work is
twofold. First, we adopt existing GAN architectures such as

2IDA Pro: https://www.hex-rays.com/products/ida/
3Binary Ninja: https://binary.ninja/
4Cuckoo Sandbox: https://cuckoosandbox.org

DCGAN [10] and ALI [11] trained on datasets of benign and
malicious samples to generate new synthetic samples. Second,
we improve the performance of DCGAN by implementing the
cosine margin loss function [12] and a relativistic discrimi-
nator [13], resulting in two novel models, namely CoRGAN
and CoRaGAN. While implementing the cosine margin loss
function allows GANs to generate quasi-realistic samples,
employing a relativistic discriminator allows GANs to learn
more fine-grained features in the training images. To the best
of our knowledge, this is the first work that combines the
cosine margin loss function with a relativistic discriminator
to improve GAN performance. We carry out extensive ex-
periments on publicly available datasets to demonstrate the
effectiveness of the proposed approach. We use conventional
performance metrics of machine learning and deep learning
such as accuracy, precision, recall and F1 score to evaluate
the robustness of the baseline classifier when new synthetic
samples are introduced into the training or test sets.

The rest of the paper is organized as follows. We review
the related work in Section II. In Section III, we provide
some background knowledge on GANs and present a novel
GAN model. In Section IV, we present our proposed approach
and system design. In Section V, we present the performance
evaluation before concluding the paper in Section VI.

II. RELATED WORK

Several adversary-aware learning algorithms have been de-
veloped in the literature, each relying on a different model of
the attacker [14] and [15]. In [14], the authors proposed to
devise classifiers with more evenly-distributed feature weights
so as to enforce attackers to manipulate more feature values to
evade detection. In [15], the authors developed a secure linear
classifier by selecting a proper regularizer. They showed that a
proper choice of the kernel function and varying some kernel
parameters can further improve non-linear classifier robustness
against adversarial samples. Rather than focusing on the design
of detection systems, we aim to provide a greater diversity of
malware samples that can be analyzed by detection systems.

There exist several works that aim to generate adversarial
samples targeted at malware detection systems, resulting in
misclassification despite only minor alterations to the sam-
ples. In [16], the authors developed a set of functionality-
preserving operations that can be used to modify binary files.
By randomly selecting these operations, a machine learning
model can be fooled about 13% of the time. To increase
the evasion percentage, the authors developed a reinforcement
learning model that learns through a series of games played
against the detection model, resulting in an evasion percentage
of 16%. In [17], the authors proposed modifying a binary
file one byte at a time and testing it against signature-based
detection systems after modification. They used this approach
to determine which bytes are important to the detection models
and subsequently reverse-engineered the signatures used by
the detection systems. In [18], the authors developed an
augmented adversarial crafting algorithm by adopting the ap-
proach presented in [19] to generate new adversarial samples.
We leverage the advantages of GANs in order to reduce the
amount of effort in sample crafting by generating synthetic
samples, which closely follow the distribution of real samples.

III. GENERATIVE ADVERSARIAL NETWORKS WITH
RELATIVISTIC DISCRIMINATOR AND LARGE MARGIN

COSINE LOSS

A. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [9] have emerged
as useful generative models capable of implicitly learning data
distributions of arbitrarily complex dimensions. In standard ar-
chitecture, GANs are made up of two adversarial components:
a generator and a discriminator which are neural networks.

Definition 1 (Generator and Discriminator - Standard GANs).
The generator and discriminator are defined as follows:

Gθ : Z → X Dψ : X → [0, 1]

z 7→ x x 7→ y (1)

We define Gθ and Dψ to be the generator and discriminator
networks, where X ⊆ Rd is the data space and Z ⊆ RL is
the latent space. The generator and discriminator mappings
depend on the trainable parameters θ and ψ. In the standard
version of GANs, the choice of parameterization for both of
these mappings is given by the use of fully connected neural
networks trained using gradient descent via backpropagation.
By mapping latent variables z ∈ Z to samples x ∈ X , the
generator Gθ induces a conditional distribution pGθ (x|z) =
δ(x − Gθ(z)) and the distribution of the generative model
is given by pGθ (x) = Ez∼pZ(z)[pGθ (x|z)], where the prior
distribution pZ(z) of the latent variable is usually chosen to
be a standard Gaussian. By training the parameters θ of the
generator network, the objective of Gθ is to induce pGθ (x) ≈
pX (x). On the other hand, the discriminator Dψ serves as an
adversary to Gθ by distinguishing between samples x which
are originally from D and samples Gθ(z) which are produced
by the generator. Ideally, a perfect Dψ takes in an input x ∈ X
and outputs a probability y where y = 0 if x is a generated
sample, i.e., x̃ := Gθ(z) for z ∼ pZ(z) and y = 1 if x
is a real sample, i.e., x ∼ pX (x). In standard GANs, the
discriminator Dψ is defined as Dψ := σ(Cψ) where σ is the
sigmoid activation function and Cψ is a real-valued function
known as the critic, which represents the pre-activation logits
of the discriminator network.

Definition 2 (Objective Function of GANs). The objective
function of GANs is a saddle point problem defined as

min
θ

max
ψ

LGAN(θ,ψ) = Ex∼pX (x)[logDψ(x)]

+ Ez∼pZ(z)[log(1−Dψ(Gθ(z)))] (2)

This is equivalent to a two-player minimax game between
the generator and the discriminator. It is shown in [9] that
given sufficient capacity, a unique solution corresponding to
a Nash equilibrium exists. In addition, given an optimal D∗

ψ ,
minimizing the objective of Gθ is equivalent to minimizing
the Jensen-Shannon divergence between pX (x) and pGθ (x).
Moreover, this is achieved if and only if pX (x) = pGθ (x),
where the distribution of the generative model successfully
replicates the underlying data distribution.

Based on the standard architecture, Radford et al. developed
DCGAN [10] in which the generator and discriminator are

both convolutional neural networks. Specifically, the generator
is an upsampling CNN made up of transposed convolutional
layers, while the discriminator is a typical downsampling CNN
with convolutional layers. We adopt DCGAN in our work as
one of the GAN models to generate new synthetic samples for
enhancing the robustness of the baseline malware classifier.

B. Adversarially Learned Inference (ALI)

Standard GANs only yield a one-way mapping from the
latent space Z to the data space X through the generator
network. GANs do not have a mechanism for learning an
inverse mapping from the data space to the latent space,
preventing them from performing inference to compute a pos-
terior distribution π(z|x) conditioned on a given data sample
x. Bidirectional models such as ALI [11] have since been
studied to incorporate methods, which can simultaneously
learn mutually coherent and two-way bijective mappings in
order to generate high-quality samples in both the latent and
data spaces. The ALI framework learns a bijection between
the domains X and Z by introducing an inference mechanism
in the form of an encoder mapping, Eϕ, from X to Z .

Definition 3 (Generator, Encoder - ALI).

Gθ : Z → X Eϕ : X → Z
z 7→ x̃ x 7→ z̃ (3)

Given the individual distributions of the latent and data
spaces, one domain can be inferred based on the other through
conditional distributions induced by Gθ and Eϕ. The generator
Gθ induces a conditional distribution pGθ (x|z) and a joint
distribution pGθ (x,z) by mapping latent variables z ∈ Z
to x̃ ∈ X . On the other hand, the encoder Eϕ induces
a conditional distribution pEϕ(z|x) and a joint distribution
pEϕ(x, z) by mapping data samples x ∈ X to z̃ ∈ Z .

Definition 4 (Discriminator - ALI).

Dxzψ : X × Z → [0, 1]

(x,z) 7→ y (4)

Unlike the discriminator in standard GANs, Dxzψ is trained
to discriminate not only samples in the data space (x versus
Gθ(z)), but also samples in the joint data and latent space
((x, z̃) ∼ pEϕ(x,z) versus (x̃, z) ∼ pGθ (x, z)). The output
for a perfect Dxzψ is the probability y where y = 0 if x
is a generated sample, i.e., x̃ := Gθ(z) for z ∼ pZ(z)
and y = 1 if x is a real sample, i.e., x ∼ pX (x). In
actual implementation, the input for Dxzψ is in the form of a
concatenation of the data sample x and the latent variable z.

Definition 5 (Objective Function of ALI).

min
θ,ϕ

max
ψ

LALI(θ,ϕ,ψ) =

Ex∼pX (x),z̃∼pEϕ
(z|x)[logDxzψ (x, z̃)]+

Ex̃∼pGθ
(x|z),z∼pZ(z)[log(1−Dxzψ (x̃, z)] (5)

C. Relativistic Discriminator

Training of standard GANs is empirically well-known for
being highly unstable and sensitive. The loss functions of both

the discriminator and generator with respect to their param-
eters tend to oscillate wildly during training, for theoretical
reasons investigated in [20]. GANs have been observed to dis-
play signs of mode collapse, which occurs when the generator
finds only a limited variety of data samples which “work well”
against the discriminator and repeatedly generates similar
copies of data samples. To overcome these caveats present in
standard GANs, Relativistic GANs (RGANs) and Relativistic
average GANs (RaGANs) have been proposed [13].

Definition 6 (Discriminator - Relativistic Standard GANs).

Dxx̃ψ : X × X → [0, 1]

(x, x̃) 7→ y (6)

Definition 7 (Objective Function of RGANs).

min
θ

max
ψ

LRGAN(θ,ψ) =

Ex∼pX (x),z∼pZ(z)[log(σ(Cψ(x)− Cψ(Gθ(z))))] (7)

Definition 8 (Objective Function of RaGANs).

min
θ

max
ψ

LRaGAN(θ,ψ) =

Ex∼pX (x)[log(σ(Cψ(x)− Ez∼pZ(z)[Cψ(Gθ(z))]))]+

Ez∼pZ(z)[log(1− σ(Cψ(Gθ(z))− Ex∼pX (x)[Cψ(x)]))] (8)

In RGANs, the relativistic discriminator estimates the prob-
ability that a given sample in the dataset is more realistic than
a randomly-generated data. On the other hand, the relativistic
discriminator in RaGANs estimates the probability that a given
real sample is more realistic than a fake sample, on average.
RGANs and RaGANs have empirically demonstrated the abil-
ity to provide greater stability in training and to produce better
quality data samples as compared to non-relativistic GANs.

D. Large Margin Cosine Loss
The large cosine margin loss [12] function serves to maxi-

mize the degree of inter-class variance and to minimize intra-
class variance in discriminating between real and generated
samples. We incorporate the large margin cosine loss function
in both the RGAN and RaGAN models, resulting in two novel
GAN models, namely CoRGAN and CoRaGAN.

Definition 9 (Objective Functions of CoRGAN, CoRaGAN).
The objective function of CoRGAN and CoRaGAN is below:

min
θ

max
ψ

LCoRGAN(θ,ψ) =

Ex∼pX (x)[log(L1(x))] + Ez∼pZ(z)[log(1− L2(z))] (9)

where L1(x) = σ(s(Cψ(x)−(Cψ(Gθ(z))+m))) (10)
L2(z) = σ(s(Cψ(Gθ(z))−(Cψ(x)+m))) (11)

min
θ

max
ψ

LCoRaGAN(θ,ψ) =

Ex∼pX (x)[log(L3(x))] + Ez∼pZ(z)[log(1− L4(z))] (12)

where

L3(x) = σ(s(Cψ(x)−(Ez∼pZ(z)[Cψ(Gθ(z))]+m))) (13)

L4(z) = σ(s(Cψ(Gθ(z))−(Ex∼pX (x)[Cψ(x)]+m))) (14)

Fig. 1: Functional diagram of the proposed approach.

and Cψ(x) := cos(θx). θx is the angle between the weight
vector W [L] of the last fully connected layer L and its incom-
ing activation vector a[L−1]. s and m > 0 are fixed parameters,
which control the magnitude of the cosine margin. We note
that while the relativistic discriminator and large margin loss
function have been developed independently, to the best of
our knowledge, our work is the first to combine them in an
integrated model to further improve the quality of generated
samples. We implement both CoRGAN and CoRaGAN in the
DCGAN architecture where both generator and discriminator
are convolutional neural networks.

IV. PROPOSED FRAMEWORK

In Fig. 1, we present the functional overview and compo-
nents in the proposed framework, which consists of three deep
learning models: two GAN models and a baseline malware
classifier. Given two datasets of benign samples and malicious
samples, the two GAN models are developed to learn the
underlying distribution of the samples in both datasets, re-
spectively. As discussed in Section III, these two GAN models
can either be DCGAN, ALI, CoRGAN or CoRaGAN. While
DCGAN and ALI differ from each other by their architecture,
DCGAN, CoRGAN and CoRaGAN use the same architecture
with a different discriminator and loss function.

To train the models, all the samples are converted to
grayscale images with a pre-defined size of W × H (e.g.,
256 × 256), which corresponds to a total of W × H pixels
or bytes. For a sample that is smaller than W ×H bytes, we
perform zero-padding on the remaining pixels of the image.
Otherwise, we perform truncation of the byte sequence after
obtaining sufficient bytes. After independently training on the
two datasets, both GAN models can generate a variety of new
synthetic samples in order to (i) enrich the training dataset of
the baseline classifier, and (ii) evaluate the classifier robustness
by introducing these samples into the test set. We note that
upon introducing new synthetic samples to the training dataset,

the baseline classifier is retrained to take into account these
new samples. In practical scenarios, retraining and updating a
model can be independently done in an offline manner parallel
to the detection process. During the retraining process, the
previous model continues to be used for malware detection
until the new model is available for deployment.

The baseline classifier is a convolutional neural network that
takes the grayscale image as an input and consists of interfac-
ing convolutional, max pooling and dropout layers, followed
by fully connected layers. It is trained on the images converted
from benign and malicious samples using Adam optimizer
with the binary cross-entropy loss. We note that developing
a baseline classifier with a high detection performance is out
of the scope of this work. There exist several works in the
literature, which also use convolutional neural networks for
malware detection based on grayscale images converted from
malware samples [7], [8]. Our work focuses on improving the
robustness of the model against new (adversarial) samples.

V. PERFORMANCE STUDY

A. Data Preparation and Experiment Setting

Our dataset comprises of a total of 2044 Windows PE32
samples, of which 1022 samples are benign and the remaining
1022 samples are malicious. We sourced for the malicious
samples from an open-source malicious software repository5.
The samples were then converted to grayscale images as
described in the previous section. The two datasets of images
for benign and malicious samples were used to train the
two GAN models independently. For training the baseline
classifier, we conducted a train-test split of approximately
80%−20% from a common pool of samples from both datasets
using a random seeded shuffle. Due to the page limit, we refer
the reader to [21] for a detailed description of the architectures
and parameters of the models. To ensure reproducibility, we
conducted each experiment over multiple random-seeded runs.

B. Synthetic Data Generation

As discussed in the previous section, both the Benign and
Malware GANs can individually be chosen as one of the four
GAN models. To simplify the validation, we used the same
model for both the Benign and Malware GANs in each experi-
ment. During each experiment, we generated the same number
of benign and malicious samples, respectively. In Fig. 2, we
present several images generated by DCGAN and ALI. We
observe that both Benign and Malware GANs are able to
consistently generate images similar to original images from
the training dataset. This demonstrates the effectiveness of
GANs in generating new samples that can be used for training
and improving the performance of the baseline classifier. We
also note that images of both benign and malicious samples do
not intuitively differ from each other as the differences in pixel
values are visually imperceptible. However, with convolutional
neural networks, the GAN models and the baseline classifier
can learn the unique and complex features that differentiate
benign and malicious samples.

5Malware Repository: https://malshare.com

(a) Top: Original Images; Bottom: Images generated by DCGAN.

(b) Top: Original Images; Bottom Row: Images generated by ALI.

Fig. 2: 256× 256 Original and Generated Images of Samples.

Fig. 3: Accuracy of Baseline Classifier on Training and Test
Sets with Only Real Samples.

C. Performance Metrics and Evaluation Methodology
We evaluated the performance of the baseline classifier

using the following metrics: accuracy, precision, recall and
F1 score. We carried out two experimental scenarios:

• In the first scenario, the test set of the baseline classifier
is fixed and contains only images converted from the
original dataset. We gradually added synthetic samples
into the training set and retrained the baseline classifier
before evaluating it against the test set. This allows us
to quantify the improvement in performance as more
samples are gradually introduced into the training set.

• In the second scenario, we first introduce a fixed number
of synthetic benign and malicious samples into the test
set. Subsequently, we repeated the same experiment as
described in the first scenario by gradually adding more
synthetic samples into the training set. This allows us to
evaluate the robustness of the baseline classifier against
new adversarial samples.

D. Analysis of Results
1) Performance of Baseline Classifier: We trained the base-

line classifier on the training dataset consisting of only original
samples. Fig. 3 shows the convergence in the accuracy of

TABLE I: Accuracy, Precision, Recall and F1 Score (%) on
Test Set Containing only Original Samples

#Samples Methods
Added DCGAN ALI CoRaGAN CoRGAN

Accuracy
100 93.94± 0.91 93.40± 1.76 94.42± 1.56 94.69 ± 1.16
200 93.26± 1.90 93.51± 1.81 94.22± 1.37 94.23 ± 0.92
300 92.83± 1.87 93.08± 2.26 94.83 ± 0.48 93.16± 1.19
400 93.78 ± 2.42 93.63± 0.98 93.41± 1.24 93.09± 1.72
500 94.22 ± 1.86 92.92± 1.89 94.22 ± 0.59 93.94± 1.08

Baseline with Original Training and Test Sets 92.22± 3.10
Precision

100 95.54± 1.48 96.68 ± 2.26 95.84± 2.16 94.94± 3.08
200 96.80± 1.62 97.15 ± 1.77 96.30± 2.67 95.28± 1.19
300 95.72± 2.68 97.51 ± 2.49 97.32± 1.15 93.91± 4.56
400 96.44± 2.02 96.77 ± 2.71 96.14± 1.24 94.89± 3.50
500 96.04± 1.99 96.45 ± 2.48 95.28± 2.63 95.11± 3.80

Baseline with Original Training and Test Sets 97.13± 0.83
Recall

100 94.36± 1.60 92.42± 3.05 95.89 ± 1.21 95.72± 1.25
200 91.72± 2.72 93.48± 1.69 94.39± 2.11 95.33 ± 1.13
300 92.51± 3.62 91.45± 5.02 94.80 ± 2.30 93.73± 2.77
400 93.16± 3.30 92.91± 2.57 94.08 ± 1.08 92.19± 3.31
500 94.14± 2.36 91.79± 3.86 96.01 ± 1.57 94.03± 2.11

Baseline with Original Training and Test Sets 93.48± 2.98
F1 Score

100 94.94± 1.54 94.50± 2.60 95.87± 1.55 95.33± 1.78
200 94.19± 2.03 95.28± 1.73 95.33± 2.36 95.31± 1.16
300 94.09± 3.08 94.38± 3.33 96.04± 1.53 93.82± 3.45
400 94.77± 2.51 94.80± 2.64 95.10± 1.16 93.52± 3.40
500 95.08± 2.15 94.06± 3.02 95.64± 1.97 94.56± 2.71

Baseline with Original Training and Test Sets 95.27± 1.30

the baseline classifier. We observe that the baseline classifier
converges to a high accuracy after 200 training epochs. On
average, the baseline classifier achieves an accuracy of about
92.22%. The precision, recall and F1 score are 97.13%,
93.48% and 95.27%, respectively.

2) Performance Improvement with Test Set Containing Only
Original Images: Table I shows the accuracy of the baseline
classifier on the test set containing only original images.
We observe that across all four different GAN models used
for generating samples, adding new synthetic samples to the
training set of the baseline classifier significantly improves
its performance. Even a small number of synthetic samples
in the training set is sufficient to achieve these effects. We
also observe that the differences in performance amongst
the GAN models used for both Benign and Malware GANs
are not significant to ascertain which model performs the
best. With the use of the cosine margin loss function and
a relativistic discriminator, CoRGAN and CoRaGAN show a
slight improvement in four out of five runs. The results also
show that adding new synthetic samples to the training set
does not always improve the precision, but it does improve
the recall and F1 score. It is to be noted that recall is an
important metric of a malware classifier that indicates better
sensitivity with high true positive and low false negative rates.

3) Performance with Test Set Including Synthetic Samples:
We investigate the effect of introducing adversarial samples
into the test set on the performance of the baseline classi-
fier (i.e., the second experimental scenario). We added 100
synthetic samples into the test set and evaluated the baseline
classifier after each training with an augmented training set.
Table II presents the comparative evaluation of all four of the
GAN models used for generating synthetic samples.

The experimental results show that when introducing new
synthetic samples to the test set, the baseline classifier trained

TABLE II: Accuracy, Precision, Recall and F1 Score (%) on
Test Set Including Synthetic Samples

#Samples Added Methods
DCGAN ALI CoRaGAN CoRGAN

Accuracy
100 95.62 96.37 94.29 95.63
200 95.01 95.37 93.77 95.41
300 95.16 96.10 94.67 95.37
400 95.60 96.23 94.74 95.48
500 95.51 95.91 93.64 95.45

Original Training Set 74.00 84.32 78.43 81.05
Precision

100 99.08 99.22 97.87 98.46
200 99.35 98.66 97.54 98.79
300 99.69 98.62 98.45 98.38
400 99.88 99.37 98.14 98.25
500 99.12 98.17 98.04 98.02

Original Training Set 89.90 85.53 90.45 89.80
Recall

100 94.19 95.27 95.66 97.10
200 94.17 96.07 95.13 96.37
300 94.76 96.25 95.80 96.69
400 94.90 96.19 96.19 96.97
500 95.09 95.06 94.46 97.17

Original Training Set 80.52 88.71 75.22 82.10
F1 Score

100 96.31 97.20 96.37 97.22
200 96.40 97.19 95.92 97.38
300 96.98 97.21 96.95 97.07
400 97.14 97.72 96.74 96.97
500 97.07 96.52 96.21 96.70

Original Training Set 85.98 88.51 85.49 86.35

on only real samples (i.e., original training set) experiences
a sharp decrease in all performance metrics (rows marked by
“Original Training Set” in the first column). We conclude that
the samples crafted by Benign GAN and Malware GAN are
suitable and diverse enough to serve as adversarial samples as
the drop in performance of the baseline classifier implies that
a subset of these samples has been misclassified.

By subsequently introducing synthetic samples (which are
different from those added to the test set) into the training
set and retraining the baseline classifier, we observe that
the obtained performance not only compensates the drop as
discussed above but also significantly improves compared to
the that of the baseline classifier trained and evaluated on the
original training and test sets (last row in each performance
metric). This result indicates that with data augmentation
of the training set with samples generated by Benign GAN
and Malware GAN, the baseline classifier is able to train
on a richer diversity of samples, which closely follow the
underlying distribution of benign and malicious file images.
We note that actual malware samples also exhibit diverse
malicious behaviors due to obfuscation techniques used by
malware programmers, leading to different grayscale images.
As a result, the baseline classifier is more robust to adversarial
samples that may not be known a priori.

VI. CONCLUSION

In this paper, we addressed a gap in current research
on data augmentation for malicious software detection using
Generative Adversarial Networks (GANs). We adopted two
GAN models including DCGAN and ALI. We developed two
novel GAN models including CoRGAN and CoRaGAN which
combine the cosine margin loss function and a relativistic

discriminator, enabling stable GAN training and producing
high-quality synthetic images. We provided a comparative
evaluation of the four GAN models with a baseline mal-
ware classifier that detects malicious samples based on their
grayscale images. We carried out extensive experiments on an
arbitrary data distribution of benign and malicious software.
We empirically showed that the methods of data augmentation
with GANs are able to consistently improve the performance
of the baseline classifier. Furthermore, we observed that a
larger training set containing synthetic samples leads to a faster
rate of performance convergence during the training of the
baseline classifier, allowing us to shorten its training time.
The experimental results also demonstrate the ability of our
GAN models to craft samples that closely approximate the
underlying distribution of benign and malicious file images,
thus being able to serve as adversarial samples in the test
set. Hence, training the baseline classifier with these generated
samples is able to enhance its robustness against adversarial
samples that may not be known a priori.

ACKNOWLEDGMENT

This research is supported by the Agency for Science,
Technology and Research (A*STAR) under its RIE2020 AME
Core Funds (SERC Grant No. A1916g2047).

REFERENCES

[1] K. Stevens and D. Jackson, “ZeuS Banking Trojan Report,” Secure-
Works, Tech. Rep., Mar. 2010.

[2] E. C. Spafford, “Is Anti-virus Really Dead?” Computers & Security,
vol. 44, p. iv, July 2014.

[3] Z. Zhang et al., “Dynamic Malware Analysis with Feature Engineering
and Feature Learning,” in Proc. AAAI 2020, New York, USA, Feb. 2020.

[4] W. Han et al., “MalDAE: Detecting and explaining malware based on
correlation and fusion of static and dynamic characteristics,” Computers
& Security, vol. 83, pp. 208–233, June 2019.

[5] Y. Ye et al., “Automatic Malware Categorization Using Cluster Ensem-
ble,” in Proc. ACM SIGKDD 2010, Washington, DC, USA, July 2010.

[6] R. Zak et al., “What can N-grams learn for malware detection?” in Proc.
MALWARE 2017, Fajardo, Puerto Rico, Oct. 2017, pp. 109–118.

[7] S. Ni et al., “Malware identification using visualization images and deep
learning,” Computers & Security, vol. 77, pp. 871–885, Aug. 2018.

[8] Z. Cui et al., “Detection of Malicious Code Variants Based on Deep
Learning,” IEEE Trans. Ind. Informat., vol. 14, no. 7, Apr. 2018.

[9] I. Goodfellow et al., “Generative Adversarial Nets,” in Proc. NIPS 2014,
Montreal, Canada, Dec. 2014, pp. 2672–2680.

[10] A. Radford et al., “Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks,” in ICLR 2016, 2016.

[11] V. Dumoulin et al., “Adversarially Learned Inference,” in Proc. ICLR
2017, Toulon, France, Apr. 2017.

[12] H. Wang et al., “Cosface: Large Margin Cosine Loss for Deep Face
Recognition,” in Proc. IEEE CVPR 2018, USA, June 2018.

[13] A. Jolicoeur-Martineau, “The Relativistic Discriminator: A Key Element
Missing from Standard GAN,” in Proc. ICLR 2019, May 2019.

[14] A. Kolcz and C. H. Teo., “Feature Weighting for Improved Classifier
Robustness,” in Proc. CEAS 2009, California, USA, Oct. 2009.

[15] P. Russu et al., “Secure Kernel Machines against Evasion Attacks,” in
Proc. ACM AISec ’16, Vienna, Austria, Oct. 2016, p. 59–69.

[16] H. S. Anderson et al., “Evading Machine Learning Malware Detection,”
in Proc. Black Hat 2017, Las Vegas, NV, USA, July 2017.

[17] C. Wressnegger et al., “Automatically Inferring Malware Signatures for
Anti-Virus Assisted Attacks,” in Proc. ACM ASIA CCS ’17, Apr. 2017.

[18] K. Grosse et al., “Adversarial examples for malware detection,” in Proc.
ESORICS 2017, Oslo, Norway, Sept. 2017, pp. 62–79.

[19] N. Papernot et al., “The Limitations of Deep Learning in Adversarial
Settings,” in Proc. IEEE EuroS&P 2016, Germany, Mar. 2016.

[20] M. Arjovsky et al., “Towards Principled Methods for Training Genera-
tive Adversarial Networks,” in Proc. ICLR 2017, France, Apr. 2017.

[21] W. L. Tan and T. Truong-Huu, “Appendix: Enhancing Robustness of
Malware Detection using Synthetically-adversarial Examples,” 2020,
https://gitlab.com/ttruonghuu/globecom2020/blob/master/appendix.pdf.

