This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2524590, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Competition-Based Participant Recruitment for
Delay-Sensitive Crowdsourcing Applications in
D2D Networks

Yanyan Han, Student Member, IEEE, Tie Luo, Deshi Li, Hongyi Wu, Member, IEEE,

Abstract—Device-to-Device (D2D) networks impose a significant challenge on delay-sensitive crowdsourcing due to the highly non-
deterministic and intermittent network connectivity. Under this setting, the paper investigates a participant recruitment problem in which
an initial set of recruited nodes, which we call seeds, need to make an optimal decision on what other nodes to recruit to perform the
crowdsourcing task. These seeds face the dilemma that recruiting more nodes increases their own payment but on the other hand also
increases the risk of being excluded from the crowdsourcing task. As a first attack to this problem, we propose a dynamic programming
algorithm. However, it is a centralized solution and hence the practicality is compromised. Therefore, we introduce two distributed
alternatives. One is based on the divide-and-conquer paradigm by first partitioning a network into a set of opportunistic Voronoi cells
and then running an optimization algorithm in each cell. The other is a task-splitting scheme which recursively delegates the recruitment
task to newly joined nodes. We implemented our proposed solutions on an Android-based prototype and built a testbed using 25 Dell
Streak tablets. Our experiments which lasted for 24 days demonstrate that the distributed schemes approximate the theoretical optimum
with affordable complexity. Moreover, we conducted simulations with a much larger scale and more diverse settings. The simulation
results corroborate the experimental data and confirm that our proposed distributed solutions closely approach the performance of the
centralized solution while satisfying the optimization goal under different network configurations.

Index Terms—Delay-Constrained, single-copy multi-path, optimization, prototype, opportunistic network.

<+

1 INTRODUCTION To this end, Device-to-Device (D2D) communication
has been identified as an effective complementary solu-
tion to address these challenges, by utilizing the short-
range (e.g., license-free WiFi or licensed mmWave) wire-
less links, to establish opportunistic connections between
mobile users for data delivery. In such mobile oppor-
tunistic D2D networks, the endpoints (i.e., the source
and destination) are not always continuously connected.
As a matter of fact, the network is generally discon-
nected, while most nodes communicate with each other
only occasionally. In order to facilitate data transfer, the
nodes adopt a store-and-forward mechanism to gradu-
ally forward data across the network.

The D2D networks will not replace the infrastructure-
based B2D (i.e., base-station-to-device) communication,
since it is obviously incapable to support general com-
munication needs of mobile users (especially for real-
time voice and data delivery). However, it does have a
niche (complementing to the conventional B2D infras-
tructure) in some application settings, such as crowd-
sourcing as to be discussed next.

ECENT years we have witnessed the remarkable
Rproliferation of intelligent wireless devices and the
rapid growth of mobile-broadband services such as
ultra-high-resolution video streaming, data sharing and
synchronization, and virtual and augmented reality that
continue driving the demand for higher consumer data
rates [1]. At the same time, the vast majority of today’s
wireless communications systems operate in the mi-
crowave spectrum below 3 GHz, which is experiencing
severe shortage and has become a crowded and lim-
ited resource. Therefore, the millimeter wave (mmWave)
band, operating at frequencies between 20 and 300 GHz,
has been proposed for next-generation (5G) cellular
systems. The massive underutilized mmWave spectrum
provides great potential to support multiple gigabit-
per-second user data rates and thousand-fold increase
in total mobile broadband data. However, the use of
mmWave band brings a new set of technical challenges
including low diffraction, weak reflection, limited Non-
Line-of-Sight distance, and coverage holes.

e Y. Han and H. Wu are with the Center for Advanced Computer Studies, 1.1 Crowdsourcing in D2D

University of Louisiana at Lafayette, Lafayette, LA, 70504. E-mail:) . . .
{yxh0499, wuY@cacs.louisiana.edi. Crowdsourcing is emerging as a new data-collection,

o _ ‘ solution-finding, and opinion-seeking model that obtains

* Zi;ie@Lg;ai;.sconf.Zth [2R, A*STAR, Singapore, 138632. E-mail: lu- o0 ded services, ideas, or content by soliciting contribu-
e D. Li is with the School of Electronic Information, Wuhan University, ~tions from a large crowd of public participants. Recent
Withan, China, 430079. E-mail: dsli@whu.edu.cn. examples of crowdsourcing range from web-based plat-
Manuscript received May 12, 2015. forms such as Amazon Mechanic Turk, Microworkers,

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2524590, IEEE

Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING

Kickstarter, and TaskCN, to popular mobile apps includ-
ing TaskRabbit, Placemeter, Weather Signal, Wave, and
Blablacar to name a few.

Crowdsourcing does not depend on any specific un-
derlying network. But D2D based crowdsourcing is par-
ticularly desired when the initiator cannot directly reach
out to the participants or the conventional approaches
for data transportation are costly. First, there are sce-
narios where infrastructure-based wireless networks (in-
cluding cellular and WiFi) are unavailable, and thus we
have to completely rely on mobile opportunistic D2D to
announce the crowdsourcing task and to transport the
requested data. Even in a developed country (such as the
United States), vast rural areas (including many popular
national parks) are not covered by wireless infrastruc-
ture. Consider a scenario in Yellowstone National Park,
where the rangers are trying to locate and rescue an elk
that has been reported with serious wound. The ranger
office can initiate a crowdsourcing task, requesting the
participants to provide photos of suspected animals. The
mobile opportunistic D2D network is perhaps the best
way to carry out such crowdsourcing.

Second, although most non-rural areas are covered by
cellular systems, the cost and bandwidth often become
the bottleneck for achieving effective crowdsourcing.
WiFi is a good alternative. However, the WiFi coverage
in most small cities, towns, and villages in US (and
around the world) is still very limited. Consider a crowd-
sourcing task to collect 1-minute video clips of traffic
congestion around the world, where each video clip is
about 20M B. Given its nature of long-term, large-scale
data gathering with low QoS requirement (i.e., tolerance
for relatively long delay and low reliability), it obviously
prefers the communication network with the lowest cost
if multiple options are available. To this end, when
crowdsourcing is introduced in cellular networks, it is
more desirable to operate over D2D rather than regular
B2D channels, for the sake of saving communication cost
of mobile participants, service providers and the end-
user who initiates the crowdsourcing task (i.e., the ini-
tiator), especially when the task involves a vast number
of participants and a massive volume of data for a long
period of time.

Moreover, we would also like to point out that our
system model and proposed solution (as to be intro-
duced next) are generally applicable to networks with
hybrid mobile and static nodes. In particular, the nodes
in D2D do not have to be mobile, and our problem
formulation can generally cover the scenario with fixed
wireless APs or other infrastructure nodes. Such static
node can be treated as a D2D node with zero mobility.
Since there exist many other mobile nodes, they can
still establish opportunistic links. For example, just like
a mobile node, a fixed AP can forward data to/from
other mobile nodes when they pass by. If multiple static
nodes are connected to each other in a cluster or to the
infrastructure via stable links, they can be merged and
treated as a single virtual node if we ignore the delay

which is much shorter than the delay over opportunistic
links. Such a virtual node has intermittent connectivity
with other mobile nodes, and can serve as either a
seed or normal participator for different applications.
Obviously, this virtual node often has more contacts with
other nodes since it consists of a set of physical nodes
(i.e., APs). If a mobile node has constant connectivity
with the APs, it is considered as part of the virtual node
as well. In a general case, there may be multiple sets
of well-connected nodes (including APs and/or mobile
nodes). Each of them is treated as a virtual node. With
such virtual nodes in the network model, the proposed
solution applies in the same way. So there is essentially
no difference between the static and mobile nodes and
thus we do not need to differentiate them.

Although crowdsourcing has been extensively dis-
cussed in recent years, the marriage of crowdsourcing
and D2D creates new, interesting research problems,
mainly due to the unique non-deterministic setting in
D2D. In particular, incentive is playing a pivotal role
to enable large-scale crowdsourcing applications by at-
tracting sufficient participation. Since the crowdsourc-
ing participants need to consume their resources (such
as battery and computing power, storage space, and
communication bandwidth) and are subject to unde-
sired risks (e.g., potential exposure to privacy threats
when sharing their data), the mobile users are often
reluctant to participate in crowdsourcing, unless they
are compensated with satisfactory rewards [2]. To this
end, a variety of incentive models have been developed
recently [3], [4], [5], [6], [7] to stimulate the collaboration
between nodes. These models, however, are not applica-
ble in D2D. Given the non-deterministic nature of D2D
networks, it is often impossible for the crowdsourcing
initiator to collect sufficient information from potential
participants or for individual participants to negotiate
with the initiator directly, precluding the use of a class of
well-studied solutions based on auction or game models
[8], [9], [10], [11], [12], [13]. In this work, we propose
to formulate a practical and interesting crowdsourcing
problem in D2D networks.

1.2 Problem Overview

There are a class of mobile applications that involve
large-scale data gathering from individual mobile de-
vices. For example, assume a crowdsourcing initiator
aims to collect data to study noise pollution experienced
by the residents of a city. So she announces a crowd-
sourcing task, asking for noise pollution data gathered
by the microphones on mobile handsets (as depicted
in Fig. 1). Note that crowdsourcing applications often
require certain coverage or granularity of the data and
must receive the data within a given time window (or
delay budget). For instance, the initiator may desire to
collect noise pollution measurement from 0.1% of the
total one million residents in the city (or 1000 samples)
for a period of one week starting from the time of
announcement.

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2524590, IEEE

Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING

Requriement
(S.c.B)

- >
- /
T -I ; I S5 Sced
\A\ A7] (M(:lb:llcl
AN 2

Candidate
e

| P~q Task
n Sensing

data

> |2t

=
RO
i

Fig. 1: An example scenario for Quota based data delivery.

An incentive is offered by the initiator to stimulate
broad participation of the crowdsourcing task. More
specifically, the initiator announces the task along with
a minimum payment per participant. In fact, many
traditional data acquisition mechanisms are based on
a similar approach. For instance, in traditional surveys
(which can be considered as a sort of crowdsourcing),
the initiator often provides some fixed incentives (such
as monetary reward or coupons) to each participant.
Likewise, fixed incentives are usually announced to re-
cruit participant for medical trials. In D2D, the initiator
often has limited ability to reach out to a large number
of mobile nodes directly. As an incentive to complete
high-quality crowdsourcing that achieves the desired
data coverage, the initiator can offer higher per-person
payment if more nodes (toward 0.1% of the total pop-
ulation) join the crowdsourcing task, such that a node
will not only participate by itself but also help recruit
other participants. However, if more samples (than the
desired 0.1% of the total population) are received, the
surplus samples are not useful for the initiator and thus
will not be paid.

At a given instance of the time window after the
announcement is made, assume a small set of nodes
have already joined the crowdsourcing task. They are
called seeds. The seeds may learn the crowdsourcing
task via various means, e.g., by scanning a Q-R code
posted by the initiator on printouts or TVs or by D2D-
based electronic announcement. Note that when a seed
joins the crowdsourcing effort, it does not always have a
direct connection with the initiator. So even it begins im-
mediately to sense the requested data and deliver them
to the initiator, it often takes a long and nondeterministic
delay before the data are received by the initiator. The
delay depends on the distance between them and the
availability of opportunistic links. Whenever the initiator
receives data from a participant, it immediately issues a
voucher to the latter. The actual payment will be made
to the corresponding participant by the end of the time
window (e.g., by mailing a check to the participants or
depositing the fund to their bank account).

Under the aforementioned incentive scheme, the seeds
are obviously motivated to recruit other nodes to par-
ticipate in the crowdsourcing. But at the same time,
the initiator has predetermined a desired number of
samples and/or is under a fixed budget. Therefore, she
can pay up to a given number of participants only

(i.e., recruitment quota). In other words, the initiator
essentially chooses the payees in a first-come-first-serve
manner, but the actual payment per person depends
on the total number of participants. If many newly
recruited nodes deliver data to the initiator before the
seeds do, then some seeds are at the risk of losing their
payment. Note that, although the seeds generally begin
their crowdsourcing effort before the newly recruited
nodes, there is no guarantee that the former can deliver
data to the initiator earlier than the latter do, especially
when the latter are closer to and have better connections
with the initiator. The problem is further complicated
since the recruiting is performed through opportunistic
links and thus the accurate number of recruited nodes
is often unknown by the seeds.

In this work, we formulate the problem from the
perspective of the seeds, which face the dilemma of
how to carefully invite additional participants in order
to maximize their gain while keeping the risk of losing
their payment low. * The detailed problem formulation
will be introduced in Section 2.

1.3 Contributions

This is the first work that investigates a realistic incen-
tive mechanism for participant recruitment for delay-
sensitive data crowdsourcing in D2D networks. The
problem is unique due to the opportunistic network
setting and the competition among mobile nodes. Since
seeds intend to maximize their own benefit, the general
principle is to recruit the qualified participants that are
able to deliver data to the initiator within a delay budget
(e.g., one week given in the above example), but at the
same time do not create threats to the seeds. Besides this
offline problem formulation, there is an online version
of the problem, as once a node is recruited, it becomes
one of the updated set of seeds and again needs to
intelligently decide how to further recruit additional
participants.

In this paper, we first formulate the offline problem
from a centralized perspective, and then propose a dy-
namic programming algorithm to solve it. The central-
ized algorithm offers useful insights but are impracti-
cal to implement in real network settings due to high
communication and computation cost. To this end, we
propose two distributed alternatives. The first one is
based on a divide-and-conquer approach by partitioning
the network into opportunistic Voronoi cells and running
an optimization algorithm in each cell. The second is a
task-splitting scheme, tailored for the online version of
the problem, which recursively delegates the recruiting
responsibility to newly joined nodes. To evaluate the
feasibility and efficiency of the proposed algorithms, we
implemented a prototype based on Android and carried

*. Multiple crowdsourcing tasks may be initiated by different nodes
in the network. They can be treated separately. At the same time, a
node may serve as an initiator, or a seed, or a participant in different
crowdsourcing tasks.

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2524590, IEEE

Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING

out experiments using 25 Dell Streak tablets for 24 days.
Moreover, we also conducted extensive simulations in
larger scales and more diverse settings than the exper-
iment. Our results demonstrate that the proposed ap-
proaches approximate the overall optimization objective
while satisfying the delay and penalty constraints.

The rest of the paper is organized as follows. Sec. 2
presents the problem formulation. Sec. 3 discusses a
centralized dynamic programming algorithm. Sec. 4 de-
scribes two distributed solutions. Sec. 5 and Sec. 6 dis-
cuss experimental and simulation results, respectively.
Finally, Sec. 7 concludes the paper.

2 SYSTEM MODEL AND PROBLEM FORMULA-
TION

In a mobile opportunistic D2D network, the delays of
the opportunistic links depend on nodal mobility and are
random variables, denoted by 7;;, where ¢ and j indicate
Nodes ¢ and j, respectively. The distribution of T;; is
general but known, which can be learnt by the mobile
nodes in a distributed manner (as discussed in Sec. 4).

Assume an initiator announces a crowdsourcing re-
quest, aiming to recruit up to c¢ participants within a
time window. There are n nodes in the network that
are interested in the crowdsourcing. The n nodes in-
clude s < ¢ seeds and m = n — s other nodes. The
seeds have received invitation and begin immediately
to sense the requested data and deliver them to the
initiator. As discussed earlier, it often takes a long and
nondeterministic delay before the data can be received
by the initiator. At the same time, the seeds initiate the
recruiting process by inviting other nodes to join the
crowdsourcing. In general, the initiator selects the nodes
that have provided the best service in the past or have
close connectivity with other candidate nodes as seeds.!.
If historic information is unavailable, the seeds are often
randomly chosen from a diverse set of nodes.

Since we intend to determine an optimal set of nodes
to be invited to join the task, we define an n x 1 vector
X as the nodes recruiting strategy, where each element
is a 0-1 variable to be optimized. If X; = 1, an invitation
will be sent to Node i; otherwise, Node ¢ will not be
invited. To keep the notation consistent, we set X; = 1
for all seeds. Note that, X; = 1 only means an invitation
is sent to Node ¢ but does not guarantee it succeeds in
the competition. To secure the payment, it must be one of
the first ¢ nodes that deliver data to the initiator within
a predefined delay budget ¢.

Let Rx be the number of nodes that participate the
crowdsourcing under X. In the opportunistic communi-
cation setting, Rx is a random variable. It is nontrivial to
compute its distribution. We will discuss how to obtain it
in the next subsection. The utility (i.e., the overall benefit
of the seeds) is defined as a function of Ry . Its exact form
is obviously subject to applications. Here we consider a

t. The optimal seed selection is out of scope of this paper and may
be studied in our future work

general increasing function denoted by f(-), which can
be, for example, f(-) = z. The average utility is thus
fx = >5_, f(x)Pr{Rx = x}. Accordingly, the utility
function is formulated as Uy = fx.

Let Px denote the probability that at least one seed
fails to join the task. A seed may lose the task due to
two reasons. First, it takes longer than ¢ to deliver its
data to the initiator. Second, its data reaches the initiator
within § after ¢ or more nodes. Again, it is nontrivial to
compute Px because of the competition among nodes
for becoming one of the final participants, as will be
elaborated in the next subsection. The penalty can be
a general increasing function of Px. Without loss of
generality, it is simply defined to be Px.

Therefore the optimization problem is formulated as
follows where §3 is the maximal tolerable penalty:

UXa

Maximize :
Px < B. @

St.:

Apparently, the goal is to maximize the utility while
keeping the risk no greater than the maximal tolerable
level. Notice that the optimization is from the perspec-
tive of seed nodes thus they could make the most
beneficial decision to themselves.

3 CENTRALIZED PROBLEM FORMULATION
AND SOLUTION

This section investigates the problem from a central-
ized perspective. Although centralized solutions require
global information, which are usually hard to obtain
in real application settings, they could offer valuable
insights into exploring the solution space and provide
useful guidelines for developing distributed counter-
parts. This work focuses on discovering an optimal so-
lution for the competition-based crowdsourcing problem
in D2D, while assuming the existence of an underlying
routing scheme, e.g., shortest path with the delivery
probability within delay budget ¢ as the link weight,
which finds a path between any two nodes and all nodes
are cooperative in data forwarding. Routing in similar
context have been studied extensively [14], [15], [16],
(17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28] and is out of the scope of this paper.

We first elaborate the details of a 0-1 nonlinear pro-
gramming optimization for the centralized problem for-
mulation introduced in Sec. 2, which yields optimal
results but suffers high computation complexity. Then,
we present a dynamic programming algorithm with
reduced computation time.

3.1

While the problem formulated above appears simple,
it is nontrivial to be solved, since the nondeterministic
network setting dramatically increases the complexity
to derive Ux and Px. In the following discussion,
we assume a deterministic underlying communication
protocol, which generates a given path to deliver the

0-1 Nonlinear Programming Optimization

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2524590, IEEE

Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING

invitation to a node (e.g., Node i) and to send data
from Node i back to the initiator.* We also assume
the average duration for message transmission over an
available wireless communication link is negligible, in
comparison with the time waiting for the communication
opportunity. This assumption is valid since the messages
involved in the node-recruiting process are all very
short. The end-to-end delay of the path is a random
variable, denoted by 7;, where a path could include one
or multiple hops. Its distribution is the convolution of the
delay distributions of the links along the path. Since link
delay distributions (e.g., T;;) are given, we can readily
compute the probability for the initiator to receive data
from Node ¢ within ¢, i.e., Pr{r; < d}.

Next, we first derive the distribution of Rx. Obviously,
Rx ranges from 0 to c. We have

Y (), 0<z<ec
Pr{Rx =z} = 2
Y=Y (), z=c¢,

where
(%)
Y(z) =)][Prin <6x.) x [] Pr(n > 6X,). ©)
i=1 ucp,; vegi

Y (z) shows the probability to have exactly z nodes
successfully send data to the initiator within delay bud-
get 4. In Eq. (3), we consider all possible combinations
of selecting z out of total n nodes, i.e., (7). Each com-
bination is represented by a set ¢;, while ¢, indicates
the unselected n — z nodes. Obviously, if a node in ¢;
is not invited (i.e., X, = 0), then Hue@- Pr(r, < 0X,)
is simply 0. Similarly, if a node in ¢, is not invited (i.e.,
X, = 0), then Pr(r, > 6X,) = 1. Therefore, the term
inside the summation of Eq. (3) shows the probability
that all invited nodes in ¢; have their delays no greater
than ¢ while the delays of other invited nodes are greater
than J. The entire equation gives the total probability
that the initiator receives data from z out of n nodes
within ¢. Once Pr{Rx = x} is known, Ux can be readily
calculated as discussed in the previous subsection.

Second, we compute Py. The complexity to derive Px
is due to the competition among nodes. More specifically,
only the first ¢ nodes that receive the invitation and
deliver data to the initiator within § can successfully
secure the payment. In other words, the initiator ranks
the nodes according to the times (i.e., delays) of receiving
their data, and decides the payees and their payment
after the process terminates (i.e., when the number of
received data samples reaches c or § expires).

Let ; be a set that includes all seeds and up to ¢ — s
additional nodes. Each ; has a probability of P, to
be ranked before other nodes. The size of ¢; may vary
from s to c. Under each size, we consider all possible

1. If Node i is a seed, it already has the invitation, so the path is
simply from itself to the initiator.

combinations of ¢;. Thus the summation of all P, yields
the probability that the seeds can successfully secure
their payments, i.e.,

(i)

Psuc:Z 21 Pw7 (4)
i=s j=

Accordingly, we have Px =1 — Pgye.
The probability P, in the above equation can be
straightforwardly formulated as follows:

5
Py, =Y Pr(n, <tX,|Vu € ¥;) x Pr(r, > tX,|Vv € §;),
t=1
)
where, Pr(r, > tX,|Vv € ;) is calculated as:
H Pr(r, > tX,), (6)

UEE]'
and Pr(7, % tX,|Vu € 9;) is:

i ()
> I P

k=1m=1uqs€p}

=tXu,) H Pr(ry, <tXy,). (7)
ub@ﬁ?

Eq. (7) intrinsically considers all possible cases where a
subset of ¢;, denoted by ¢{, consists of nodes with their
delay equal to ¢, while the rest of ; (denoted as 1?)
has delay less than ¢. Obviously, only the nodes being
invited (i.e.,, with X, = 1) affect the above probability
calculations.

Plugging Ux and Px into Eq. 1, we arrive at a 0-1
nonlinear optimization problem. It can be numerically
solved by using existing algorithms such as Branch and
Bound and Backtracking [29], [30]. For example, we have
employed the available Matlab solver to obtain results to
verify the effectiveness of the optimization approach.

3.2 Dynamic Programming

In the 0-1 nonlinear optimization model introduced
above, both the utility function and penalty function are
nonlinear. Although existing techniques can be applied
to search the constrained space, they are often time
consuming, thus unscalable to large networks.

At the first glance, node-recruiting process is similar to
0-1 Knapsack problem in the sense that they both intend
to choose a subset of candidates to maximize a utility
function with subject to a constraint. However, there ex-
ists a critical difference between them. In Knapsack, each
item has independent value and weight, which remain
invariant regardless of the set of selected items. Thus
once an item is chosen, the algorithm can simply add its
value to the total value and deduct its weight from the
remaining capacity. In the competition-based participant
recruitment problem, however, a node does not have an
explicitly addable utility or deductible penalty, because
the utility and penalty functions depend on which set

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2524590, IEEE

Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING

U({4,5}, {1,2,3},) =
Max {U({4,5}, {1.2}, £), U({4,5,3}, {1.2},)}

U({4.5}, {1.2}, f) = U({4,5,3}, {1,2}, B) =
Max {U({4,5}, {1},), U({4,5.2}, {1},)} Max {U({4.5.3}, {1}, £), U(4,5,3.2}, {1},)}
U({4,55, {15, A) = || U({4,5.2}, {1}, 8) = U453} {11, /)= || U({4,5,3.2, {1}, f)=
Max {U({4,5}, @,), || Max {U({4,5,2}, @, B),| |Max {U({4,5.3}, @,), | |Max {U({4,5.3,2}, @, p),
U({4.5.1}, 2, 5) U({4.5.2.1}, 0, A} U({4.53.1}, 0.)} U({4,5.3.2.1}, 0, p)}

Fig. 2: An example of the dynamic programming algorithm.

of nodes receive the invitations. A node has different
contribution to the utility and penalty, when the set of
invitees are different.

In this research, we devise an efficient dynamic pro-
gramming algorithm to solve the centralized node re-
cruiting problem. More specifically, let ® be the set of
nodes that have been chosen as invitees, while ¥ be
the set of undetermined candidate nodes. The initial @,
denoted as ®,, includes the set of s seeds; and ¥ initially
includes other n — s candidate nodes, denoted as ¥,,.

Let U(®, 7,) denote the utility of the optimal solu-
tion, under the following conditions:

o First, all nodes in ® have been selected as invitees;

o Second, any subset of candidate nodes in ¥ can be
selected as invitees; and

o Third, the total penalty is no greater than §.

In other words, U(®, ¥, 3) denotes the best possible
solution when the nodes in ¢ have been determined as
invitees, while other nodes can be freely chosen.

Consider a random node x € ¥. Obviously, x is either
included or excluded in the optimal solution, depending
on which case results in larger utility value. Thus we
have

U(®,V,8) =max{U(®,V—{z}, 8), U(P+{z}, V—{z}, ?’))}
8

However, since neither U(®,V — {z},5) nor U(® +
{z},¥ — {z},8) is known, U(®, ¥, 3) cannot be imme-
diately determined. The algorithm recursively derives
U(®, ¥, B) according to Eq. (8), until ¥ = (). When ¥ = (),
U(®, 7T, 5) can be computed based on the set of chosen
invitees in ®, according to the equations in Sec. 3.1.
Note that, in Sec. 3.1, we have derived the formula for
Ux with X as unknown variables, and then determine
X to maximize Ux. Here, when ¥ = (), X is already
determined, so we can straightforwardly compute the
corresponding utility, i.e.,, U(®,V, j3).

The algorithm then traces back to calculate
U(®,,V,,3), ie, the maximum utility under the
overall optimal solution. Note that the sequence to
examine the nodes in ¥ (i.e., in above discussions)
does not affect the final results.

An example of the algorithm is illustrated in Fig. 2.
Assume a network with 5 nodes: Node 1 to Node 5. The
seeds include {4,5}. Obviously ®, = {4,5} and ¥, =
{1,2,3}.

The computation complexity of dynamic program-
ming is polynomial to the input node number n and
the penalty threshold §. Each calculation of U(®,0,3)
requires a computation of n°"!. Therefore, the overall
complexity is An°t2.

4 DISTRIBUTED SOLUTIONS

In general, the centralized algorithm offers useful in-
sights but is impractical to implement in real network
settings. It demands global network information result-
ing in significant communication overhead. Even if the
global network information is available, the centralized
algorithm is computationally expensive, because it con-
siders all potential crowdsourcing participants in the
D2D network. To this end, two distributed algorithms
are developed for making efficient node recruiting de-
cisions. The first one is based on a divide-and-conquer
approach by partitioning the network into opportunistic
Voronoi cells and then let each cell run the optimization
with much fewer candidate nodes. The second one is
a task-splitting scheme which recursively delegates the
recruiting responsibility to newly joined nodes.

Note that the locations of seeds generally vary over
time, because the nodes are mobile and the whole work
is based on opportunistic D2D connections. Moreover,
the Voronoi partition of the network is not based on
geographic location but the stochastic delay distribution
between nodes. This is why it is named opportunistic
Voronoi diagram. The nodes are grouped in the same cell
because they have the probabilistically closest connec-
tions to the cell generator (i.e., the seed of the cell). While
nodes are mobile, their delay distributions are relatively
stable. Thus the opportunistic Voronoi diagram does not
change during a crowdsourcing task.

4.1 Cell-Based Distributed Solution

Under the distributed setting, each node maintains a
set of “neighbors” with which it has direct (i.e., one-
hop) contact and the corresponding delay distributions.
The delay distribution of a direct link between two
nodes can be built through their historical inter-meeting
times and updated upon a new meeting event. In our
implementation, we adopt discrete time slots to con-
struct approximate delay distributions, where each slot
is A minutes. The distribution of direct contact between
Nodes i and j is represented by [P}, P2, ..., B}], where
Pf indicates the probability that their inter-meeting time
is between (d — 1)A and dA. It is required that DA be
no less than delay budget §. Such approximate delay
distribution can be obtained via a trivial online learning
algorithm. For example, Fig. 3(a) shows the delay dis-
tribution between two nodes (Nodes 1 and 24) during
the experiment (with the experimental setting deferred
to Sec. 5). Since they are close to each other, the total
delivery probability within § = 3 days is high, around
0.935. Most of consecutive contacts happen within 2
days. Furthermore, Fig. 3(b) shows the convergence of

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2524590, IEEE

Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING

o
®

°
S

o
>

by

o
2
Delay distribution

Cumulative delivery probability
o o o o
&

o
o
o

o

o

0
5 10 15 20 Tue Fri Wed Mon Sat
Time slots /3.6 hours Time over 24 days

o

(a) Delay distribution. (b) Delay distribution variation.

Fig. 3: Delay distribution between node 1 and 24 during 2
experimental days.

delay distribution. As can be seen, the delay distribution
converges fast. There is small fluctuation around Sunday
due to the reduced nodal contacts during weekend. But
after the first week, the variation becomes insignificant
and keeps stable.

To realize the cell-based approach, we first partition
the network according to an opportunistic Voronoi dia-
gram with the seed nodes serving as generating points.
The network partitioning can be initiated by the seeds
and performed in a distributed manner via local com-
munications. More specifically, each seed broadcasts an
announcement that includes its identity. The announce-
ment is essentially flooded with a predefined time-to-live
window. When the announcement is forwarded from
Node ¢ to Node j, the delay distribution of the link is
appended to the announcement.

A candidate node may receive announcements from
multiple seeds; and from each seed, it may receive
multiple copies of the same announcement. Each an-
nouncement (including different copies from the same
seed) contains a path to reach the seed and the delay
distributions of all links along the path. The end-to-
end delay distribution of a path is the convolution of
the corresponding links” delay distributions. To partition
the network, an appropriate metric must be defined
to indicate the “distance” between nodes. The metric
should take end-to-end delay distribution into consid-
eration. In this work, we let the “distance” between two
nodes be the inverse of the probability that their end-
to-end delay is no greater than §. A candidate node
chooses the closest seed and joins its cell. Algorithm 1
outlines the cell establishment procedure and how the
the candidates interact with the seeds and initiator. The
algorithm essentially forms opportunistic Voronoi cells
with the seeds as generating points, as shown in Fig. 4.

Once the opportunistic Voronoi cells are formed, the
generating point (i.e., seed) of each cell can run the
algorithms discussed in Sec. 3.2 to make a local decision
for new nodes invitation. Since the algorithm is limited
in individual cells, both the communication and compu-
tational overheads are much reduced compared with the
centralized solution.

While the idea is straightforward, it is tricky to choose
proper inputs to run the algorithm. First, the recruitment
quota for each cell must be decided. Obviously, if every
seed assumes a quota of ¢ available, each of them will

0 0.5 1 1.5 2 25 3 3.5 4

Fig. 4: An example of cells formed by 25 nodes in the experi-
ment, where the solid dots indicate seeds while hollow circles
represent candidate nodes. The distance between two nodes
is inversely proportional to their meeting probability within 4.
The blue lines show the boundaries between cells.

Algorithm 1: Cell-based recruitment

Input: p: the packet received, p.type : packet type,
p.srclD : packet originator, At: time interval
until now, ~: predefined reply collection
period, recATable: received announcements
from seeds, NewMem: newly recruited
nodes.

if Node;.type == initiator then

Select seeds based on contact history and send
| an invitation to them;

else if Node;.type == seed then
while At < v do
if p.type == cell Reply then
L if p.candID not received before then
| candTable < p.canlD;

ci=z; xcf(n—s);
NewMem + Optimization(d, c;, ®, canTable);
| Send inwvitation to candidates in NewGrpMem,;

else if Node;.type == candidate then
while At < v do
if p.type == cell Announce then
L if p.seedld ¢ recATable then
| recATable + p;

Sort recATable based on the delivery probability
with p.seedI D in descending order;
Node;.seedID < recATable]0].p.seedID;
Send a reply to Node;.seedID;
if p.type == invitation, p.srcID = Node;.seedI D
then
Send con firmation back to the initiator;
Node;.type = NewMem.

intend to aggressively recruit new nodes to join the
crowdsourcing task. Although the penalty constraint
(i.e., B) appears satisfied in each cell, the actual penalty
is high, due to the excessive nodes being invited in the
entire network. Therefore, we propose to allocate a quota
x4

to each cell, in proportion to the cell size, i.e., ¢; = c

n—s

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2524590, IEEE

Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING

where z; is the number of candidate nodes in the cell 4,
n — s is the total number of candidate nodes.

Second, the set of seeds as the input of the algorithm
must be decided. To this end, we have explored two
options. One approach is to isolate the cells. To optimally
invite nodes in each cell, the algorithm considers only
one seed, the proportionally allocated quota, and the
candidate nodes in the cell. We call it single-seed cell-based
distributed approach. Since this approach is run by an
individual seed, without consideration of other seeds in
the network, it essentially loosens the penalty constraint
and thus tends to be aggressive. The decision made by a
seed may result in high penalty cost of other seeds. More
specifically, a seed may invite a number of candidates
that are ranked higher than other seeds, thus increasing
the probability that such seeds lose the task.

Another approach is to achieve joint optimization
across cells. The algorithm still considers the candidate
nodes in a given cell only, but takes the whole set of
seeds into account for computing the overall penalty.
When the algorithm is applied in Cell i, it assumes a
quota of ¢; + s —1 available, including ¢; for the cell and
s—1 for other seeds. It tends to be more cautious, since it
considers the entire set of seeds in the optimization and
makes sure the invited candidate nodes do not result in
a penalty greater than 8 based on all seeds. We call it
whole-seeds cell-based distributed solution.

The comparison between different strategies will be
further discussed in Sec. 5. No matter which approach
is adopted, once a seed decides a set of candidates in its
cell, it sends invitation to them, which upon receiving
the invitation, send data to the initiator.

In the cell-based distributed approach discussed
above, each seed makes its own decision based on local
knowledge about the network. Apparently, such decision
is not necessarily optimal, due to the incomplete inputs.
However, it serves as a good approximation as to be
illustrated in Sec. 5. The computation complexity at a
seed is ﬁx““, where ¢; << ¢ and n; << n. The
communication overhead in each cell is proportional
to the length of delay distribution maintained by each
node (in the order of O(x;)) and the number of nodes
in each cell (i.e., ;). Since there is only one seed in a
cell, candidate nodes only need to deliver their delay
distribution to the seed so that the seed can calculate
Ux and Px. Therefore, the overall communication cost
is O(2?).

4.2 Task Splitting: An Online Distributed Approach

The cell-based scheme discussed above adopts a divide-
and-conquer approach by partitioning the network into
cells and then running the optimization algorithm in
each individual cell. The complexity apparently depends
on cell size. In general, the more seed nodes, the smaller
the average cell size. But in an extreme case, the com-
plexity of the cell-based scheme can be similar to the
centralized solution (e.g., when there is only one seed).

Intrinsically, the cell-based scheme has such problem
because it relies on the seeds to recruit new nodes to
join the task. Based on this observation, we further
propose an online distributed approach, which delegates
the recruiting responsibility to newly joined nodes. We
call it task-splitting scheme, as outlined below.

Algorithm 2: Task Splitting based recruitment

Input: p: the packet received, p.type : packet type,
p.srel D : packet originator, NewMem: newly
recruited nodes

if Node;.type == seed, Node;.type == candidate

then

boolean flag =

Optimization(Node;, Node;, ®, c;);

if flag == true then

¢ = ¢ X aif (i +a;); ¢ = ¢ x o/ (a; + ay);
<I> < ® + Nodej; p.type = invitation;

send p to Node;;

else if

Node;.type == candidate, p.type == invitation then

Send con firmation back to initiator;
| Node;.type = NewMem.

Each node maintains a “popularity” metric, which can
be as simple as the number of valid contacts per time
unit.? Let ; denote the popularity of node i. Similar to
previous discussions, let ® be the set of nodes that have
been chosen as invitees, which is initialized to be the set
of seeds (i.e., ®,). Initially, the total recruitment quota
(i.e., ¢) is allocated to the seeds, proportionally to their

popularity. For a seed i, its allocation is ¢; = ¢x 5~
ke®,

As to be discussed next, ¢; will be updated durmg the
task-splitting process.

When a node ¢ € ® meets another node j ¢ @, it needs
to make two decisions.

o First, it must decide if Node j should be recruited.
o Second, if Node j is recruited, how to delegate
future recruiting responsibilities to it.

To make the first decision, Node ¢ essentially runs
the optimization (introduced in Sec. 3.2) based on the
partial information it has. More specifically, it keeps an
incomplete @ based on its observation, denoted by 7,
which includes the initial seeds (that are known by every
seed) and the new members recruited by itself. Node j
is considered as the only candidate node. The quota is
assumed to be c¢; +|®?|. The outcome of the optimization
determines whether Node j should be recruited in.

If Node j is recruited, Node i will update &' by includ-
ing Node j. At the same time, it will make copy of the
updated @’ for Node j to initialize ®/. Moreover, it must
decide how to delegate future recruiting responsibilities

§. Note that when two nodes are connected for a long period,
they may continuously find each other as “contacts” if they perform
periodical neighbor discovering. Such continuous contacts between the
same nodes are treated as one contact only.

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2524590, IEEE

Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING

to Node j. This is done by simply splitting the current ¢;
between the two nodes proportlonally to their populanty
metrics, ie., ¢, = Czoztj-l(% and c = Cza+ -, where ¢}
and ¢} are the quotas to be used by Nodes i and J,
respectlvely On the other hand, when Node j joins, it
immediately sends data to the initiator, as demonstrated
in Algorithm 2.

The splitting procedure continues until the delay bud-
get 0 expires. The computing complexity of the algorithm
is obviously low, involving local computation only. Since
there is only one candidate node, the computation com-
plexity is a constant. Similarly, the overall communica-
tion cost is also a small constant.

Comparing the two schemes, the cell-based is more
applicable in scenarios with more seed nodes while
the task-splitting is preferred when fewer seed nodes
present. We will further discuss this observation in Sec. 5
(see Fig. 10 and related discussions).

4.3 Performance Analysis

To theoretically compare the proposed algorithms, we in-
vestigate the performance bound, i.e., to show the bound
of the Utility of each distributed algorithm relative to
the centralized approach. To facilitate the analysis, we
assume the delay distribution among nodes are uniform
and let a be the probability that the overall delay is
not greater than J between two nodes. In practical
application, « is always greater than 0.5. In the following
discussion, “Central” stands for the centralized dynamic
programming algorithm; “Cell-Single” means the single-
seed cell-based distributed approach; “Cell-Whole” in-
dicates the whole-seeds cell-based distributed solution;
and “Split” is the task-splitting algorithm.

Theorem 4.1. The utility of the cell-based and split -based
approach is no less than O(W) and O(W) of
the centralized algorithm, respectively.

Proof. First, for Central, the average utility can be de-
rived from Eq. 3 as: Utility(Central) = ca’t*(1 —
)"~ (5+k) where k is the number of recruited nodes. k
should be determined subject to the penalty constraint
given in Eq. 4. The detailed derivation of k is omitted
here because as to to be shown next, k will be canceled
in the calculation of the bound.

For Cell — Single, there are totally s cells, each with
the allocated quota of ¢ and the overall Utility(Cell —
Single) = ca'™ (1—a)™/s=(+K) where k' is the number
of newly recruited nodes in each cell.

Therefore, we have Utngfl(g(@él;igf)le) =
k' +l-s=k(q Q)sthtE-n=k'-1" Given o > 0.5,
we have CGEHTEISRES > (1 - @R -
Q)sthtE—n=k =1 ﬁ thus Utility(Cell —
Single) = O(W)Utzlzty(C’entral)

The only difference between Cell — Whole and Cell —
Single is that in each cell, all seeds (i.e., s) are taken into
account and the quota is ¢ +s—1. Similarly, we can derive

9
TABLE 1: Performance comparison.

Success No. of Ave. Ave.

Rate Data Samples | Utility | Delay

Central 0.822 9.35 9.35 15.76h
Cell-Whole 0.792 9.87 9.9 15.18h
Cell-Single 0.778 11.25 10 13.92h
Split 0.761 12.54 10 13.31h
1 - [T successrate {16, i 16,
0.9 14% 0.9 —&— Data samples 14%
o) £ © £
g 0.8 122 E 0.8 12§
% 0.7 10—§ § 0. 7. 10§
3 a§ %) BE
0.6 || —=— Data samples ||| % 0.6 6 §
o o

3 05 d

8 9 10, 1 12
Quota

8 9 Slirce nblie 2 !

(a) Variation of c. (b) Different initiators.

Fig. 5: Success rate under different quota values and number
of initiators.

Utility(Cell — Whole) = O(q—==7)Utility(Central),
showing the same bound as Cell — Single.

Split is similar to Cell — Whole, but with dy-
namically increasing cells because the newly recruited
nodes are also eligible to recruit new nodes, which
in turn, renders the size of a cell smaller. But the
calculation of utility is still similar. We have de-
rived Utility(Split) = ca®**(1 — a)'~* where k
is 0 or 1. AccordinglAy, we have %
Lak=h(1 — @)sthtl=n=hk > 1(1 — @)st1=" Therefore,
Utility(Split) = O(W)Utzlzty(Centml)

Until now, we have shown the utility of the cell-
based and split-based approach is respectively bounded
by O(W) and O(W) of the centralized
algorlthm This completes the proof of Theorem 4.1. O

5 PROTOTYPE AND EXPERIMENTS

To empirically demonstrate the feasibility and evaluate
the efficiency of the proposed competition based par-
ticipant recruiting nodes for crowdsourcing in D2D, we
have implemented a prototype on Android and carried
out testbed experiments with 25 Dell Streak tablets for
24 days.

5.1 Testbed Setup

The experiment was carried out on campus with the
participation of student volunteers frequenting labora-
tories, classrooms, dormitories, and a variety of other
locations. Twenty five mobile devices tagged as Node
1 to 25 were distributed to students for a period of 24
days. Each tablet has 16 GB internal storage to keep
experimental data. The devices communicate with each
other via 1 Mbps Bluetooth channels with sufficient
buffer. The duration of a contact is always sufficient to
let nodes complete their data transmission.

A set of nodes, including {1,3,5,6,12,19}, are ran-
domly chosen as initiators. Each initiator launches a
new crowdsourcing task periodically. In each task, the

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2524590, IEEE

Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING

———————————— 1500
—+&— Nodal popularity | |
I Farticipation

bmbrecmcbecrmmmmecmmmbmmmem

6000 E\&sﬂ;

5000

4000 |
3000
I

i
=y
P

Number of participafions

Number of contacts

o
=3
S

2000

1000

0 0
1243192164 6 91222114137 10251117 5182315820
Node ID

Fig. 6: Relation between nodal popularity and participation.
Nodes 1, 3, 5 and 6 are both initiator and seed nodes (in dif-
ferent crowdsourcing tasks), marked by blue(b); other initiators
19 and 12 are red(r); seed nodes 2,4, 9, 7, 10, and 8 are indicated
by cyan(c), and all other nodes are depicted by magenta(m).

. 13 1 18
o Sy
12 1o 162
0.9 e 3
o s 2 <
g 0y £ 9 145,
5 08 s 3 g
3 95 s 8 120
3] ° @ o
S o7 88 5 >
2 s z7 105
7 g >
06 . 6 H H H HB K
05 5 5 HH

Query’generation timé during®4 days> Query generation time during 24 days

(a) Success rate and number of
data samples.

(b) Delay and utility.

Fig. 7: Performance variation under different task generation
time.

initiator randomly chooses a subset of up to ten nodes
as seeds. To add dynamics, Nodes 1 and 3 generate one
task per hour, while other initiators generate one task per
four hours. Note that these packets (varying between 10
bytes and 200 bytes) are the announcement packets from
the initiators. Such packets describe the crowdsourcing
tasks, e.g., the type of data solicited by the initiator,
the deadline, the payment, etc. They are not the actual
data collected by the participants, which apparently vary
depending on the task. For example, in a crowdsourcing
task to collect 1-minute video clips during the New Year
Day celebration, each video clip is about 20MB. Given
the enormous amount of total data, it is cost-effective to
transport them via D2D networks.

Based on preliminary tests, we configure the default
protocol parameters as follows: the penalty threshold /3
is 0.2; ¢ is 3 days; and c varies from 8 to 13.

In order to facilitate a fair comparison between dif-
ferent schemes, they should be tested under the same
nodal mobility. However, it is apparently impossible to
run multiple algorithms simultaneously. Thus, we opt to
implement one of them, i.e., the task-splitting algorithm,
on the mobile devices. At the same time, we extract
detailed mobility trace from the experiment, and run
other algorithms based on the trace.

5.2 Experimental Results

The interested performance metrics include the success
rate, the average utility, the number of data samples, and
the average delay of receiving the data. The success rate

10

is defined as the fraction of crowdsourcing tasks where
all seeds successfully obtain the payments. The number
of data samples indicates the average number of data
received by the initiator under each crowdsourcing task.
The performance comparison is summarized in Table 1.
Since this is the first work that investigates the problem
of competition-based crowdsourcing in D2D, there are
no competing schemes to compare with. Because differ-
ent recruitment quota (i.e. ¢) and seeds (i.e. s) lead to
different data samples and utility the table shows the
results with ¢ = 10 and s = 8. The variation of the
parameters will be illustrated in later figures.

As can be seen in Table 1, only “Central” keeps the
group success rate safe above 0.8 (ie, 1 — 5 = 0.8)
because the complete global information enables the
centralized algorithm to make an optimal decision which
maximizes the expected utility while meeting the penalty
constraint. “Cell-Whole” achieves a success rate close to
0.8. The other two distributed schemes are more aggres-
sive in recruiting new nodes to join the crowdsourcing
task, and thus resulting in higher probability that at least
one seed fails to obtain the payment. Meanwhile, under
a more aggressive approach, the initiator receives more
data samples with shorter delay, and the average utility
is higher. When the number of data samples reaches c,
the average utility arrives at the peak. Furthermore, the
centralized approach is the most conservative because
it tries the best to protect the benefit of seeds. In other
words, it may avoid choosing a candidate strongly con-
nected to the initiator in order to make sure the seeds
will not be rated behind the candidate and eventually
fail to obtain the payment. On the other hand, the other
approaches are more aggressive, which may choose the
strongly connected candidates at the sacrifice of some
success rate. As a result, their average latency is lower
than the central one.

Next, we will show the impact of various parameters
in the performance.¥ In general, when we study the
impact of one parameter, we set other parameters to be
constants. All results presented below are gathered from
the testbed experiment (i.e., based on the distributed
task-splitting algorithm).

Fig. 5 shows the impact of recruitment quota. In-
tuitively, with the same seeds, the larger quota, the
easier for every seed to secure a payment. Therefore, the
success rate increases. At the same time, more nodes can
be recruited into the group. As a result, the number of
data samples also increases. The increase of tasks also
naturally leads to a higher average utility (although this
is not shown in Fig. 5(a)).

We also observe diverse performance of the crowd-
sourcing tasks launched by different initiators (see
Fig. 5(b)). To understand the result, please also refer
to Fig. 6, which shows the popularity of the nodes.
The nodal popularity is based on the valid contacts

9. Due to space limit, the following figures have double-ticked Y-
axis. To ease readability, please find the corresponding legend for each
Y-axis.

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2524590, IEEE

Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING

11

0.8

0.6

CDF

0.4

0.2

Number of data samples

(b) Distribution of number of data samples.

10 11 12 13 6 7 8 9 10
Average utility

(c) Utility distribution.

Fig. 8: The cumulative distributions of performance metrics.

1
0.8
0.6
w w
a a
(&} [&]
0.4
0.2
Or
0.4 0.5 0.6 0.7 0.8 0.9 1 6 7 8 9
Success rate
(a) Success rate distribution.
0.9 16
[Success rate 120 10 ‘ —v— Delay ‘ ‘ [Utility
08] 18
go7 —— Data samples 105 :? 8 ED
= @ 5 >
206 s 8 > 128
g 3 &6 S
2 °° 68 2 108
2z s
04 I3 4 5
4 @ <
o« i 8
03 H v
1

N
~

1 Selay bsudgel/éays 5

(b) Delay and utility.

I?)elay b:hdgel/éays 5 6

(a) Success rate and data sam-
ples.

Fig. 9: Performance under different delay budget.

0.85

3 10
0.8
0.75f 95
) Z
8 7 H]
. 5
g g
8 0.65 &
@ “—p— Success rate(Split) 8.5§
0.6 —#— Success rate(Cell)
0.55 —=— Uitiity(Splt) | 18
—o— Utility(Cell)
0.5
5 6 9 10

Nuaner of sgeds

Fig. 10: Performance under different number of seeds.

between nodes as introduced in Sec. 4.2. Besides the
popularity, Fig. 6 also shows nodal participation, i.e.,
the number of times each node participates in the tasks.
In general, the initiator with higher popularity have
more frequent contact with others and thus are able to
acquire more precise network knowledge. Consequently,
they can make accurate decisions, with high success
rate and relatively low overhead, as shown in Fig. 5(b).
Although with exceptions, this general trend holds for
most initiators. The small number of data samples for
initiator 5 is because the student carrying the node was
absent from the third Thursday to Saturday, and thus
some data samples destined to it were dropped.

Fig. 7 illustrates the performance during 24 days. First
of all, we can see a clear periodicity in weeks for the suc-
cess rate and number of data samples in Fig. 7(a), where
the X-axis shows the time when such crowdsourcing
tasks are generated. In the first week, the nodes are in the
process of discovering neighbors and learning the link
delay distributions. Therefore, many decisions are based
on incomplete and unstable network information. The
performance is naturally poor. From the second Monday,
nodes have gathered stable network information, so

the optimization results become more accurate, yielding
higher success rate. It is worth mentioning that two
students carrying Nodes 5 and 15 are absent from the
third Thursday to Saturday, which significantly degrade
the performance.

In general, nodes have more frequent contacts during
weekdays than weekends. When a crowdsourcing task is
generated on Monday, the seeds have sufficient time to
deliver data to the initiator. As a result, the success rate
is often the highest. If a task is initiated in later days
of a week, the probability of delivering data within ¢
becomes smaller. In particular, if it is during weekends,
some seeds have to wait until next Monday before they
are able to send out the data or recruit new participants
due to the lack of contacts, thus some tasks are simply
terminated without success. The delay and utility also
follow a similar pattern as depicted in Fig. 7(b). The
delay drops during the last three days, because the
activities launched have not enough time to get finished,
but only those that are finished before the end of the
experiment are counted.

Fig. 8 illustrates the performance distributions. As
discussed earlier, although the desired penalty threshold
is § = 0.2, the distributed approach does not guarantee
to achieve it due to incomplete local inputs and the
approximated algorithm. However, as shown in Fig. 8(a),
more than 70% of crowdsourcing tasks reach the target
success rate of 0.8. The number of data samples ranges
from 6 to 13, with an average of 10. Therefore, the utility
concentrates around 10.

Next, we change the delay budget ¢ to observe its
impact on the performance as shown in Fig. 9. The
delay budget directly affects the routing selection and
the optimization process. With a larger §, more data can
be delivered to the initiator and the average delay is
naturally longer. Meanwhile, since more candidate nodes
become available under larger 6, better optimization
result (i.e., higher success rate and/or higher utility) is
achievable. When ¢ is sufficiently large (e.g., when it
reaches 3 days in this experiment), the gains in utility
and success rate tend to become saturated. Another im-
portant parameter is the number of seeds as illustrated
in Fig. 10. In general, when there are more seeds, it is
more difficult to ensure each of them secure a payment.
Thus the success rate decreases. Besides, more seeds

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2524590, IEEE

Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING

12

16 — 16
16[[=7 from seeds 16 13 1T == invitations| ./.,,,-———l 1’ [lfrom seeds [—=— Invitations]
14 from others 14
14/, I from others 14 M | _ o
—&— Invitati 12 M 12
N 10 < 10 - - - 10
= 10 70.613] 10 " 5 @
2 0.61 Final ‘ 2 .cE>
[S:} 0.634 0 8 partigipapts| g 5 8 8
2 " = % 6
6 6 5 5
4 4 4 4
5 5 [from seeds 2 2
I from others
07 8 9 10 11 12 13 11) 00 1 2 3 4 6 0 0 5 7 8 9 10 0
Quota Delay budget/days Number of seeds

(a) Under different quota.

(b) Under different delay budgets.

(c) Under different number of seeds.

Fig. 11: Performance comparison between seeds and other nodes. The numbers above the bars in (a) illustrate the ratio of the
number of successful participants from seeds to all successful participants. From the ratio, we can observe that when c is small,
a higher percentage of successful participants come from the seeds, and the percentage decreases when c increases.

often help more efficiently recruit new nodes to join
the crowdsourcing, thus enhancing the average utility.
We also observe that when the number of seeds is low
(e..g, not greater than 6), task — splitting can satisfy the
required success rate 0.8, while keeping a higher utility
than cell—based. Thus it is better than cell—based scheme
(which has a unnecessarily higher success rate at the
sacrifice of certain utility). When there are more seeds,
cell — based scheme performs better since it achieves the
success rate closer to the expected threshold than the
task — splitting approach.

Besides the overall performance, we are also interested
in the behaviors of seeds and other nodes. With a larger
¢, the seeds more aggressively recruit new nodes to par-
ticipate the crowdsourcing. As a result, more invitations
are sent, and the total number of data samples and
final participants naturally increase. As can be seen in
Fig. 11(a), as ¢ increases, the algorithm allows bigger
room to let new nodes join the competition, thus more
candidate nodes successfully obtain the payment. Sim-
ilarly, seeds dominate when ¢ is small (see Fig. 11(b)).
After ¢ 3 days, almost every seed can secure a
payment, thus more room is given to other participants.
The effect of the number of seeds is straightforward as
illustrated in Fig. 11(c). Suppose the total recruitment
quota is fixed, with more seeds, there is less necessity to
recruit other nodes. The number of invitations shows a
steady increase because seeds always receive invitations
from the initiator.

6 SIMULATIONS

Besides the experiments, we have extracted the algo-
rithm codes from our prototype and carried out ex-
tensive simulations based on Haggle trace [31] and
DieselNet [32] trace by varying the penalty threshold
and network size, which are difficult to test in the
experiments.

First, the result based on Haggle trace is presented in
Fig. 12 and Fig. 13. As shown in Fig. 12, a larger penalty
threshold () allows the seeds to recruit more nodes.
So there is a higher expected utility. At the same time,
more nodes will compete with the seeds, increasing the

—+— Central

—— Cell-Whole
—6— Cell-Single
—a— Split

10
9.5 /
9

0.2

Success rate

0.5 0.6

0.2 0.3 0.4 0.5 03 0.4
Penalty threshold Penalty threshold

(a) Success rate. (b) Average utility.

Fig. 12: Simulated performance for Haggle under different 3,
with ¢=10, §=3 hours, 30 total nodes, and 8 seed nodes.

—

.75

o
»

—+— Central
—*— Cell-Whole
—©— Cell-Single
—&— Split

Success rate
)

o
N

d

o

o
Y
o
0

30 40 3 35 40 45 50
Network size Network size

(a) Success rate. (b) Average utility.

Fig. 13: Simulated performance for Haggle under different
network size, with 8=0.2, c=10, =3 hours, and 8 seed nodes.

1
—+— Central 10
0.9 —%*— Cell-Whole
° —6— Cell-Single 9
s 08 —=— Split
@ =
§ 0.7 % 8
506
@»
7
0.5
0.4 6
0.1 0. 0.6 0.1 0.6

.2 0.3 0.4 0.5 0.2 0.3 0.4 0.5
Penalty threshold Penalty threshold

(a) Success rate. (b) Average utility.

Fig. 14: Simulated performance for DieselNet under different
B, with ¢=10, 6=2 days, 30 total nodes, and 8 seed nodes.

probability that some seeds fail to secure their payments.
Thus the success rate decreases.

In addition, we also investigate the effect of network
size (in terms of the total number of nodes in a given
area). A higher network density often boosts the com-
munication opportunities. Consequently, all approaches
achieve higher success rate, because the data have a
better chance to be successfully delivered. With more
data samples, more nodes secure their task, thus the
average utility increases.

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2524590, IEEE

Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING

) 7/ -

0.65

o
o

o
N
o

/

—+— Central
—#— Cell-Whole
—o6— Cell-Single
—a— Split

Success rate
o
9

8
10 20 30 40 10 15 20 25 30 35 40
Network size Network size

(a) Success rate. (b) Average utility.

Fig. 15: Simulated performance for DieselNet under different
network size, with 5=0.2, c=10, §=2 days, 30 total nodes, and
8 seed nodes.

x 10°

3.5

25

N

Communicatin cost (bytes)

0.5

0
Split Cell-Single Cell-Whole
Different schemes

Central

Fig. 16: Communication cost under different schemes.

As observed in Fig. 14 and Fig. 15, the result under
DieselNet trace has a similar trend as that under Haggle
trace. The only difference is that due to low node density
(given a small number of buses in a large area), the valid
contacts (refer to Sec. 4.2) between nodes are fewer than
people’s meeting events under Haggle trace. Therefore,
the overall success rate is lower while the utility is also
lower. When network size is less than 20, some seed
nodes even can not find a path for itself to reach the
initiator within 4.

Finally, Fig. 16 illustrates the communication cost un-
der different schemes. The centralized approach results
in the highest communication overhead because each
node must exchange delivery distribution table regard-
ing all other nodes. In distributed solutions, the commu-
nication cost is proportionally reduced due to the smaller
size of optimization problem. Notice that Cell-Single
displays slightly lower cost because it doesn’t need to
exchange the information with other group members
compared to Cell-Whole, but both of them have to
maintain the delay distribution of their cell members.
Therefore, their communication cost is higher than Split.

7 CONCLUSION

In this paper, we have investigated the competition-
based participant recruitment for large-scale, delay-
sensitive data crowdsourcing in Device-to-Device (D2D)
networks, which are characterized by their highly non-
deterministic and intermittent connectivity. We have for-
mulated the problem from the perspective of the seeds,
i.e., a set of nodes already in the crowdsourcing and face
the dilemma of inviting additional participants in order
to maximize their gain while keeping the risk of losing
their payment low. We have proposed a dynamic pro-
gramming algorithm as a first attack to this problem, fol-
lowed by two distributed alternatives. The first one is a

13

divide-and-conquer scheme by partitioning the network
into opportunistic Voronoi cells and let each cell run the
optimization, while the second is a task-splitting scheme,
which recursively delegates the recruiting task to newly
joined nodes. We have implemented a prototype and
carried out experiments using 25 tablets for 24 days and
run simulations for a more extensive evaluation under
larger scales and more diverse settings. The results have
shown that the distributed schemes approximate the
optimization with affordable complexity, which can be
adaptively chosen based on different network settings
and nodal resource constraints (i.e., computation capa-
bility and storage limitation) .

REFERENCES

[1] Ericsson, “5G Radio Access,” in Ericsson White Paper, 2013.

[2] D. Yang, G. Xue, X. Fang, and J. Tang, “Crowdsourcing to Smart-
phones: Incentive Mechanism Design for Mobile Phone Sensing,”
in ACM MobiCom, 2012.

[3] T. Ning, Z. Yang, H. Wu, and Z. Han, “Self-Interest-Driven
Incentives for Ad Dissemination in Autonomous Mobile Social
Networks,” in Proc. of INFOCOM, pp. 2358-2366, 2013.

[4] S. Marti, T. Giuli, K. Lai, and M. Baker, “Mitigating Routing
Misbehavior in Mobile Ad Hoc Networks,” in Proc. of ACM
MobiCom, pp. 255-265, 2000.

[5] B. Chen and M. Chan, “MobiCent: A Credit-Based Incentive
System for Disruption Tolerant Network,” in Proc. of INFOCOM,
pp- 3119-3127, 2011.

[6] S.Zhong,]. Chen, and Y. R. Yang, “Sprite, A Simple, Cheat-proof,
Credit-based System For Mobile Ad-hoc Networks,” in Proc. of
INFOCOM, pp. 1987-1997, 2003.

[7] L. Buttyan, L. Dora, M. Felegyhazi, and 1. Vajda, “Bater Based
Cooperation in Delay-Tolerant Personal Wireless Networks,” in
Proc. of WoWMoM, pp. 1-6, 2007.

[8] L. Song, D. Niyato, Z. Han, and E. Hossain, “Game-theoretic
Resource Allocation Methods for Device-to-Device (D2D) Com-
munication,” IEEE Wireless Communication Magazine, 2014.

[91 J. Sun, X. Chen,]J. Zhang, and Y. Zhang, “SYNERGY: A game-

theoretical approach for cooperative key generation in wireless

networks ,” in Proc. of INFOCOM, pp. 997-1005, 2014.

X. Zhuo, W. G. nd Guohong Cao, and S. Hua, “An Incentive

Framework for Cellular Traffic Offloading,” IEEE Transactions on

Mobile Computing, vol. 13, no. 3, pp. 541-555, 2014.

K. Zhang, R. Wang, and D. Qian, “AIM: An Auction Incentive

Mechanism in Wireless Networks with Opportunistic Routing,”

in Proc. of International Conference on Computational Science and

Engineering, pp. 28-33, 2010.

I. Senturk, S. Yilmaz, and K. Akkaya, “Connectivity restoration in

delay-tolerant sensor networks using game theory,” International

Journal of Ad Hoc and Ubiquitous Computing, vol. 11, no. 23,

pp- 109-124, 2012.

Q. Li, S. Zhu, and G. Cao, “Routing in Socially Selfish Delay

Tolerant Networks,” in Proc. of INFOCOM, pp. 1-9, 2010.

[14] A. Balasubramanian, B. N. Levine, and A. Venkataramani, “DTN

Routing as a Resource Allocation Problem,” in Proc. of ACM

SIGCOMM, pp. 373-384, 2007.

D. Gunawardena, T. Karagiannis, A. Proutiere, E. Santos-Neto,

and M. Vojnovic, “Scoop: Decentralized and Opportunistic Mul-

ticasting of Information Streams,” in Proc. of ACM MobiCom,

pp- 169-180, 2011.

T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Efficient

Routing in Intermittently Connected Mobile Networks: The

Single-Copy Case,” IEEE Transactions on Networking, vol. 16, no. 1,

pp- 77-90, 2008.

[17] N. Banerjee, M. D. Corner, D. Towsley, and B. N. Levine, “Relays,
Base Stations, and Meshes: Enhancing Mobile Networks with
Infrastructure,” in Proc. of ACM MobiCom, pp. 81-91, 2008.

[18] W. Zhao, M. Ammar, and E. Zegura, “A Message Ferrying Ap-
proach for Data Delivery in Sparse Mobile Ad Hoc Networks,”
in Proc. of MobiHoc, pp. 187-198, 2004.

[10]

[11]

[12]

(13]

[15]

[16]

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2524590, IEEE

Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

[32]

1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

E. Miluzzo, N. D. Lane, K. Fodor, R. A. Peterson, H. Lu, M. Mu-
solesi, S. B. Eisenman, X. Zheng, and A. T. Campbell, “Sensing
Meets Mobile Social Networks: The Design, Implementation and
Evaluation of the CenceMe Application,” in Proc. of SenSys,
pp- 337-350, 2008.

P. Mohan, V. Padmanabhan, and R. Ramjee, “Nericell: Rich
Monitoring of Road and Traffic Conditions using Mobile Smart-
phones,” in Proc. of SenSys, pp. 323-336, 2008.

A. Lindgren, A. Doria, and O. Schelen, “Probabilistic Routing in
Intermittently Connected Networks,” ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 7, no. 3, pp. 19 — 20,

W. Gao and G. Cao, “User-Centric Data Dissemination in Disrup-
tion Tolerant Networks,” in Proc. of INFOCOM, pp. 3119-3127,
2011.

U. Lee, S. Y. Oh, K.-W. Lee, and M. Gerla, “RelayCast: Scalable
Multicast Routing in Delay Tolerant Networks,” in Proc. of ICNP,
pp- 218-227, 2008.

W. Gao, Q. Li, B. Zhao, and G. Cao, “Multicasting in Delay
Tolerant Networks: A Social Network Perspective,” in Proc. of
MobiHoc, pp. 299-308, 2009.

S. Ioannidis, A. Chaintreau, and L. Massoulie, “Optimal and
Scalable Distribution of Content Updates over a Mobile Social
Network,” in Proc. of INFOCOM, pp. 1422-1430, 2009.

K. C. Lin, C. Chen, and C. Chou, “Preference-Aware Content
Dissemination in Opportunistic Mobile Social Networks,” in Proc.
of INFOCOM, pp. 1960-1968, 2012.

J. Fan, J. Chen, Y. Du, W. Gao, J. Wu, and Y. Sun, “Geocommunity-
Based Broadcasting for Data Dissemination in Mobile Social
Networks,” IEEE Transactions on Parallel and Distributed Systems,
vol. 24, no. 4, pp. 734-743, 2013.

C. Boldrini, M. Conti, and A. Passarella, “Contentplace: Social-
Aware Data Dissemination in Opportunistic Networks,” in Proc.
of ACM MSWiM, pp. 203-210, 2008.

A. H. Land and A. G. Doig, “An automatic method of solving
discrete programming problems,” Econometrica, vol. 28, no. 3,
pp- 497-520, 1960.

D. E. Knuth, The Art of Computer Programming. Addison-Wesley
Professional, 1960.

J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and
A. Chaintreau, “CRAWDAD trace cambridge/hag-
gle/imote/infocom (v. 2006-01-31).” Downloaded from
http:/ /crawdad.cs.dartmouth.edu/cambridge/ haggle/i-
mote/infocom, Jan. 2006.

J. Burgess, B. N. Levine, R. Mahajan,]. Zahorjan,
A. Balasubramanian, A. Venkataramani, Y. Zhou, B. Croft,
N. Banerjee, M. Corner, and D. Towsley, “CRAWDAD
data set umass/diesel (v. 2008-09-14).” Downloaded from
http:/ /crawdad.cs.dartmouth.edu/umass/diesel, Sept. 2008.

Yanyan Han received the BS and MS de-
gree in electronic information engineering from
Shandong University, Jinan, China, in 2008 and
Wuhan University, Wuhan, China, in 2011, re-
spectively. She has been working toward the
PhD degree in computer science at the Center
for Advanced Computer Studies (CACS), Uni-
versity of Louisiana at Lafayette (UL Lafayette),
since 2011. Her current research interests in-
clude delay-tolerant networks, wireless sensor
networks and mobile opportunistic networks.

14

Tony Luo is a Scientist and Principal Inves-
tigator at the Institute for Infocomm Research
(I2R), A*STAR, Singapore. He received his PhD
degree in Electrical and Computer Engineering
from National University of Singapore in 2009.
Since then till 2012, he was a Research Fellow of
the Computer Networks & Distributed Systems
Lab and the Communications & Networks Lab at
NUS, as well as worked in the industry in 2010.
From 2012 till present, he joins 12R, A*STAR. His
research interests include Crowdsourcing, par-
ticipatory sensing, crowd-sensing; Internet of Things (loT) and Cyber-
Physical Systems (CPS) and Network economics.

Deshi Li received the PhD of Computer Ap-
plied Technique in 2001 from Wuhan University,
Hubei, China. He is currently a professor in
School of Electronic Information, Wuhan Univer-
sity as the Dean of the department. His research
interests include System on Chip, Wireless Sen-
sor Network, Internet of Things and UnderWa-
ter Acoustic Networks. He has (co-)authored
around 40 research papers published. He has
been member of program committees of many
international conferences.

Hongyi Wu received the BS degree in sci-
entific instruments from Zhejiang University,
Hangzhou, China, in 1996, and the MS degree
in electrical engineering and the PhD degree in
computer science from the State University of
New York at Buffalo in 2000 and 2002, respec-
tively. Since then, he has been with the Center
for Advanced Computer Studies, University of
Louisiana at Lafayette (UL Lafayette), where he
is currently a professor and holds the Alfred
and Helen Lamson Endowed Professorship in
computer science. His research spans delay-tolerant networks, radio
frequency identification systems, wireless sensor networks, and inte-
grated heterogeneous wireless systems. He received the US National
Science Foundation CAREER Award in 2004 and the UL Lafayette
Distinguished Professor Award in 2011. He is a member of the IEEE.

