
Approximating Constraint Manifolds Using Generative Models for

Sampling-Based Constrained Motion Planning

Cihan Acar and Keng Peng Tee

Abstract— Sampling-based motion planning under task con-
straints is challenging because the null-measure constraint
manifold in the configuration space makes rejection sampling
extremely inefficient, if not impossible. This paper presents
a learning-based sampling strategy for constrained motion
planning problems. We investigate the use of two well-known
deep generative models, the Conditional Variational Autoen-
coder (CVAE) and the Conditional Generative Adversarial
Net (CGAN), to generate constraint-satisfying sample config-
urations. Instead of precomputed graphs, we use generative
models conditioned on constraint parameters for approximating
the constraint manifold. This approach allows for the effi-
cient drawing of constraint-satisfying samples online without
any need for modification of available sampling-based motion
planning algorithms. We evaluate the efficiency of these two
generative models in terms of their sampling accuracy and
coverage of sampling distribution. Simulations and experiments
are also conducted for different constraint tasks on two robotic
platforms.

I. INTRODUCTION

Robot motion planning is concerned with finding a

collision-free continuous path, from a start configuration to

a goal configuration, which satisfies a set of constraints such

as joint limits, self-collision, and kinematic constraints [1].

For high-dimensional complex robotic systems, sampling-

based motion planning algorithms can be effectively imple-

mented in high-dimensional configuration spaces (C-space).

Sampling-based algorithms work by sampling random valid

configurations and forming a collision-free graph or tree of

valid motions using these valid configurations. Probabilistic

Road Maps (PRM) and Rapidly-exploring Random Trees

(RRTs) [2] are two of the most popular sampling-based

motion planning algorithms often shown to yield good per-

formance in practice [3].

Collision constraints alone are relatively easy to deal with

using rejection sampling since the volume of collision-free

configuration space is usually not negligible (exceptions in

e.g. narrow corridor problem). In contrast, task constraints

are generally difficult to ensure when using sampling-based

motion planning. For tasks with pose constraint or closed-

chain kinematic constraint, there is a very low, if not null,

probability of randomly sampling a constraint-satisfying

configuration, due to the null-measure manifold induced

by these task constraints in the configuration space [4].

Therefore, rejection sampling is usually not feasible for

highly constrained motion planning problems.

The authors are with the Institute for Infocomm Research (I2R),
A*STAR, Singapore 138632.

Email: {acar cihan, kptee}@i2r.a-star.edu.sg

Constrained motion planning can be done by tailoring the

method to only specific task constraints, such as orientation

constraint, closed-chain kinematic constraint, and view con-

straint, among others. However, this approach is not general

for handling new or different task constraints, and it might be

difficult to combine different methods for handling multiple

simultaneous task constraints present in certain applications.

In this paper, we focus on using generative models to sam-

ple valid configurations on constraint manifolds, motivated

by the success of generative models in producing some of the

most realistic content in different domains including image,

video, and text, among others. We employ two of the most

popular and powerful generative models, VAE and GANs, to

approximate the constraint manifolds for pose-constrained

manipulation tasks and a balance-constrained whole-body

motion task. Task-independent environment constraints, such

as obstacles, are not entangled in our learned models. Thus,

the trained models can be reused in different/new envi-

ronments with the same task specifications (e.g. different

obstacle fields). Furthermore, the learning-based framework

can easily approximate any new task constraint manifold

by prior training on relevant data, and can be paired with

any motion planner that receives the constraint-satisfying

configuration samples from the generative model.

The contributions of this paper are:

i) A method for sampling-based constrained motion

planning using generative models, learned from

prior/demonstrated task data, to approximate the con-

straint manifold and generate new constraint-satisfying

samples online/offline for constrained motion planning.

ii) Performance comparison analysis between two of the

most popular generative models, CVAE and CGAN,

and insight on the accuracy of generating constraint-

satisfying configurations and coverage of sampling dis-

tribution.

iii) Validation on different task constraints, including end-

effector pose constraint, closed kinematic chain con-

straint, and balance constraint to show the generality

and flexibility of the approach to different applications

and environments.

II. RELATED WORK

To solve the constrained motion planning problem, various

techniques have been proposed, including ones based on

projection, tangent space, atlas construction, and inverse

kinematics (IK) (see [5] for a review). In projection-based

methods, randomly sampled configurations are projected

onto the constraint manifold by using iterative techniques.

Since the early works on randomized gradient descent ap-

proach [6], variants of the projection strategy have been

developed, including random linear projection [7] and the

popular Jacobian pseudoinverse projection [8], [9]. To reduce

the number of projection operations, planning on the tangent

bundle of the constraint manifold was proposed [10]. An

atlas for the constraint manifold was built online and incre-

mentally on which planning was carried out directly [11].

IK-based methods try to satisfy the task space constraints

via IK for a subset of joints so that constraint-free planning

can be performed on the remainder joints. To deal with

closed kinematic chains, methods such as kinematics-based

roadmap [12] and Random Loop Generator [13] decompose

closed chains into open subsets, sampling from a subset and

using IK to ensure that closure constraints are satisfied for

the rest of the joints. Recently, IK-based motion planning for

a dual-arm robot with orientation constraints was proposed in

[14]. Based on some assumptions on the kinematic structure

of the arms, an analytic IK solution was obtained for the

wrist joints such that the orientation constraints were strictly

satisfied. However, each of these methods was tailored to a

specific task constraint (orientation or closed-chain kinematic

constraints) considered in the papers and would not gener-

ally apply to other types of task constraints (e.g. balance

constraints) or a combination of constraints.

Instead of coming up with a new planner for constrained

motion planning, Sucan [15] used offline precomputed ap-

proximation graphs to approximate the constraint manifold.

In this technique, a set of constraint-satisfying configurations

is generated offline, stored as edges in the graph, and then

drawn during the planning process to solve the constrained

motion planning problem. The advantages of this technique

are that constraint-satisfying configurations can be sampled

very fast, and there is no need to make any changes to the

planner. They showed the reduction of planning time for ori-

entation constraint and dual-arm constraint on different envi-

ronments using the PR2 robot with respect to the projection-

based methods. Similar offline sampling was also applied for

whole-body motion planning on a humanoid robot to sample

configurations that satisfy balancing constraints [16]. The

biggest issue with the approximation of constraint manifolds

with the precomputed dataset is that it is not probabilistically

complete because sampling is limited by the fixed dataset,

and the manifold coverage is determined by these finite

numbers of samples. It also has the drawback of inflexibility

against constraints which can be parameterized by more than

a few parameters.

Recently, learning-based approaches are proposed for

motion planning [17]-[22]. Learning sampling distribu-

tions from demonstrations using CVAE is recently pro-

posed to improve the performance and exploration strate-

gies of sampling-based motion planning algorithms [17].

To achieve that, CVAE is trained conditioned on the initial

state, goal region, and obstacles in the environment. A

similar method also used CVAE trained on a prior database

to predict roadmaps for sampling-based motion planning

problems [22]. The issue with these approaches is that since

learning is based on previous demonstrations or data to

bias the samples toward promising regions, performance is

highly affected for new environments which might have

different obstacle configurations. In this work, we utilize

deep generative models to estimate the sampling distribution

of constrained robot configurations. Instead of using training

data that depend on obstacles in the environment, we train

our models on robot configuration data parameterized by task

constraints. To the best of our know knowledge, this is the

first study that investigates the feasibility of using generative

models for sampling constraint-satisfying configurations in

constrained motion planning problems.

III. APPROXIMATING CONSTRAINT MANIFOLDS USING

GENERATIVE MODELS

Generative models are powerful tools for learning rep-

resentations of high dimensional data [23], and are able

to learn complex constraint manifolds. In this paper, we

utilize them to approximate the constraint manifolds for

constrained sampling-based motion planning. We propose to

sample constraint-satisfying configurations using two of the

most popular generative models – VAE and GAN – instead

of sampling from a fixed database which contains a limited

number of samples. Using generative models, on the other

hand, makes it possible to generate infinitely many samples

and results in greater coverage of the constraint manifold.

To handle parameterized constraints, we use conditional

versions of VAE and GAN. Our approach focuses on the

sampling part and is decoupled from the planning algorithms.

Therefore, it is possible to use it directly with available

sampling-based motion planning algorithms.

A. Conditional Variational Autoencoders (CVAE)

Variational Autoencoders (VAEs) are powerful generative

models for learning latent (hidden) representations. In our

case, we utilize them to approximate the constraint man-

ifold and generate new constraint-satisfying configurations

for constrained motion planning problems. An autoencoder

mainly consists of two components: i) an encoder which

compresses the input data into a latent vector referred to as a

‘bottleneck’, and ii) a decoder to reconstruct the original data

using this latent vector. The latent vector is regularized to

generate new data using the decoder. Training of the VAE is

based on maximizing the following variational lower bound:

L(θ, φ;x) = −βDKL(qφ(z|x)||pθ(z)) +

Ez∼qθ(z|x)[logpθ
(x|z)] (1)

where the first term (KL divergence) is considered as a

regularizer and the second term reconstruction loss. To

control the effect of regularization, the weighting factor β in

the range of 0 to 1 is also introduced [24]. In this equation,

pθ(z) represents the decoder and qφ(z|x) the encoder. After

training, the encoder can be discarded, and the decoder used

to generate new data.

In the conditional version of VAE, both latent variable

and input data are conditioned to some random variable

y, which in our case, represents the constraint parameters.

For instance, condition variables for end-effector orientation

constraint can represent the roll, pitch, and yaw values of

the constraint. Similarly, condition variables for position

constraint can represent the x, y, and z values. By changing

the values of the condition variable, we can generate samples

that satisfy different constraints. To generate new constraint-

satisfying configurations, the latent vector is sampled from

the unit Gaussian and then used as an input to the trained

decoder. The output of the decoder is a novel robot config-

uration that can be used by the motion planner.

B. Conditional GANs (CGANs)

Generative adversarial networks (GANs) use two neural

networks, competing against each other to generate new

data [25]. The first network is called a generator which

tries to generate new data similar to the original, and tries

to convince the second network, called a discriminator, that

the generated data is a real one. The discriminator, on the

other hand, tries to discriminate whether the data from the

generator is real or not. Both generator and discriminator are

trained simultaneously. The original GAN is a two-player

min-max game with value function V (D,G), defined as:

min
G

max
D

V (D,G) = Ex∼pdata
[logD(x)] +

Ez∼pz(z)[log(1−D(G(z)))] (2)

where D(x) represents the discriminator and G(z) the gen-

erator. During training, the discriminator tries to maximize

this function and, at the same time, the generator tries to

minimize it.

Similar to CVAEs, conditional GANs (CGANs) have been

proposed to generate conditional samples [26], based on the

following objective function for CGANs:

min
G

max
D

V (D,G) = Ex∼pdata
[logD(x|y)] +

Ez∼pz(z)[log(1−D(G(z|y)))] (3)

Here, both the generator and discriminator are conditioned

to some random variable y. Similar to CVAEs, the condition

variable y for CGANs represents the parameters of the

constraints and makes it possible to generate configurations

satisfying parameterized constraints with the same model.

C. Generating Samples from the Constraint Manifold

To generate new constraint-satisfying configurations from

CVAE, a latent vector z is sampled from the normal dis-

tribution and used as an input to the decoder of the CVAE

with condition variable y. For CGAN, noise (latent) vector

z is sampled from a uniform distribution and then used

as an input to the generator of the CGAN with condition

variable y. In our case, the decoder/generator is trying to

generate robot configurations that satisfy the constraints. We

present the process of generating new constraint-satisfying

configurations in Algorithm 1.

Algorithm 1: Generate Samples from Model

Offline :
Collect constraint-satisfying configurations q using IK.
Train generative model Mgen (CVAE or CGAN)

conditioned on constraint parameters y.
Online :
Initialize new planning problem {qstart, qgoal, y}.
Generate N new samples from Mgen, conditioned on y,

and push them inside a buffer Queue.
while Planning do

while Queue is Not Empty do
Pop a sample qnew from Queue.
if qnew satisfies constraints then

return qnew

Generate N new samples from Mgen, conditioned on
y, and push them inside buffer Queue.

(a) CVAE

(b) CGAN

Fig. 1: Sampling distributions for pose-constrained task using
(a) CVAE and (b) CGAN. end-effector positions corresponding
to constraint-satisfying samples are represented by the dots (in
magenta).

IV. RESULTS

We tested our method on different robots and environ-

ments1. Robots used include i) the Olivia robot, a customized

version of the DRC-Hubo robot comprising a 3-DOF torso

and dual articulated arms (7-DOF each), and ii) the Pholus

robot, a bimanual quadrupedal robot with similar hardware

and software structure to the Centauro robot [27] built by the

Istituto Italiano di Tecnologia (IIT). Each leg of the Pholus

robot has 5 DOFs excluding the wheel, and the upper body

1The reader is referred to the supplementary video accompanying this
manuscript for demonstration of the results.

has a single-DOF torso and a pair of 7-DOF arms.

Our approach was implemented in MoveIt! [28] frame-

work using the Open Motion Planning Library (OMPL) [29].

We primarily used the RRT-Connect [30] planner to show

the efficiency of our method, though KPIECE (Kinody-

namic Planning by Interior-Exterior Cell Exploration) [31]

and SBL (Single-query Bi-directional probabilistic roadmap

planner) [32] were also tested. In addition to these planners,

it is possible to use our sampler with any other available

sampling-based motion planners since our method does not

require any modification of existing planning algorithms.

We trained CVAE and CGAN models in Python Tensorflow

using a NVIDIA GTX2080Ti GPU. Then, we used C++

implementation of Tensorflow to make inference from these

models during the sampling process of planning by imple-

menting it as a custom motion planning constraint sampler

plugin in MoveIt!. The sampling of robot configurations from

the generator of CGAN, or the decoder of CVAE, was done

online during the planning.

A. End-Effector Pose-Constrained Manipulation Task

We first compared the sampled configurations generated

by CVAE and CGAN models satisfying an end-effector pose

constraint where both orientation and height of the end-

effector (z value) are to be fixed with respect to the world

frame. Both CVAE and CGAN were conditioned upon the z

value of the end-effector corresponding to different height

constraint values. Using inverse kinematics, we collected

10000 robot configurations for each z value within a range of

between 0.5-1.0m, at increments of 0.1m. After training, the

rate of constraint-satisfaction by the samples generated from

CVAE and CGAN are around 3.5% and 9% respectively,

based on tolerance of 0.01 m for position constraint and

0.01 rad for orientation constraint. These low rates are due

to the strict constraint tolerance, and the relatively small

dataset size. However, it is compensated by the fact that

generating samples online from CVAE and CGAN is fast,

such that sufficient samples can still be generated and used.

The average computation times to generate the different

numbers of samples per time are shown in Table I. To reduce

the planning time, it is also possible to generate samples

offline, store them in a database before planning, and then use

these stored samples directly during planning. Furthermore,

it is possible to generate configurations that are conditioned

on height values different than the collected dataset. For

instance, configurations with z values of 0.65, 0.77, 0.86,

etc. can be sampled using the trained model, which shows

the flexibility of conditional generative models.

Although samples generated by CVAE have a lower rate

of satisfying the constraints than CGAN, they cover the

manifold more uniformly compared to CGAN. While the

samples generated by CGAN model have a higher rate of

constraint satisfaction, they cover specific regions of the

manifold more, which is a well-known issue known as mode

collapse for GANs [33]. More advanced GAN models in the

literature address this issue [34], but it is out of the scope of

this paper. For the same amount of sampled configurations,

TABLE I: Average times for generating samples online using
CVAE and CGAN models

Number of Samples CVAE (ms) CGAN (ms)

100 3.39 4.03
1000 12.07 14.85
10000 85.6 119.7
100000 783.7 1214.1

the distribution of the constraint-satisfying samples can be

seen in Figure 1, where each dot represents the end-effector

position corresponding to a valid constraint-satisfying robot

configuration generated by the model.

For evaluation of the generative models, we first consid-

ered a relatively simple environment with obstacles as seen

in Figure 2. The joints in the left arm and torso (total 10

DOFs) were used for planning, under the constraint of fixed

orientation in roll, pitch, yaw axes, and height of the end-

effector. The goal location was between two wall-shaped ob-

stacles, and the start location on one side. Besides CVAE and

CGAN, we also evaluated, in this environment, a projection-

based constrained motion planning method, namely CBiRRT

[9], and a method of approximating constraint manifolds with

precomputed graph (PG) [15]. The PG dataset consisted of

the same 10000 configurations used to train the generative

models. The success rate and average planning time without

path simplification are shown in Table II for 1000 runs. We

observe that CVAE and CGAN have both faster planning

times on average than CBiRRT.

TABLE II: Computation times and success rates for 1000 runs of
the obstacle avoidance problem.

Methods Average
Time(s)

Minimum
Time(s)

Maximum
Time(s)

Success
Rate (%)

CVAE 0.116 0.085 0.32 100.0
CGAN 0.164 0.105 0.42 100.0
PG 0.077 0.039 0.3 97.6
CBiRRT 0.572 0.076 2.8 100.0

Next, we tested the efficiency of these models in a more

difficult maze environment, as seen in Figure 3, under

the same end-effector pose constraints. Even though the

environment obstacles were different, the same trained CVAE

and CGAN models of the pose constraint manifold were

used. The robot, holding a tool (red cuboid object), must

plan motion from a start configuration to a goal configuration

while keeping the height of the tool constant with respect

to the world frame, and also the roll, pitch, and yaw axes

fixed within a tolerance of 0.01 rad. Even though the task

constraints are the same as in the previous task, this is a

much harder problem to solve since collision avoidance in

a maze environment causes a significant reduction in the

dimension of the constraint manifold. The maximum time

to find a solution for motion planning is limited to 200

seconds. After 200 seconds, motion planning is terminated

(a) t0 (initial) (b) t1 (c) t2 (d) t3 (e) t4 (f) t5 (goal)

Fig. 2: Pose-constrained manipulation task where the end-effector needs to move from start to goal (marked with axes) on both sides of
a wall, subject to constant height and orientation. The solution path obtained using CGAN model is illustrated with green dot.

(a) t0 (initial) (b) t1 (c) t2 (d) t3 (e) t4 (f) t5 (goal)

Fig. 3: Maze problem scene. End-effector of Olivia holding a tool is required to keep the height constant. The start and goal positions
are marked with axes. The solution path obtained using CVAE model is illustrated with green dots.

(a) t0 (initial) (b) t1 (c) t2 (d) t3 (e) t4 (f) t5 (goal)

Fig. 4: Snapshots of dual-arm manipulation of object to goal pose in the presence of object orientation constraint and obstacle.

and counted as a failure. Our CBiRRT implementation did

not manage to find a solution for the given time limit. The

results in Table III, based on 100 runs, show that the highest

success rate and shortest planning time came from the CVAE

generative model, which indicates the importance of covering

sampling distribution uniformly. We see that since sampling

from a precomputed dataset is limited to a fixed number of

configurations, reduction in the dimension of the constraint

manifold results in a notable performance drop for PG in

this maze environment. A visualization of the motion plan

found using the CVAE model can be seen in Figure 3, which

shows the end-effector path and also snapshots of the robot

joint configurations.

TABLE III: Computation times and success rates for 100 runs of
the maze problem.

Methods Average
Time(s)

Minimum
Time(s)

Maximum
Time(s)

Success
Rate (%)

CVAE 18.83 6.15 46.06 99.0
CGAN 93.81 16.81 193.87 89.0
PG 119.7 35.18 200.02 37.0

B. Dual-Arm-Constrained Manipulation Task

To evaluate our method in handling closed-loop kinematic

constraints, we considered a task with the Olivia robot

bimanually holding a tray with a bowl on top. This task

involved both orientation and position constraints for one

arm with respect to the other, in order to hold the tray and

also an orientation constraint for both arms with respect to

the world frame to keep the bowl upright. As a result, roll,

pitch and yaw values of the tray were to be kept fixed. CVAE

and CGAN were conditioned on the parameter d representing

the distance between the wrists and also orientation of the

wrists, so as to hold an object at different poses. We collected

robot configurations for a set of d values within a range of

between 0.2-0.7m, at increments of 0.1m. For each d value,

we collected 2500 configurations for each of 4 different pitch

angles of the wrist (at 45◦ intervals), giving a total of 10000

configurations per d value. In addition, two 7-DOF arms,

together with a 3-DOF torso, make up a 17-dimensional

configuration space. We collected dual-arm pose-constrained

configurations using the Bio-IK [35] algorithm (as a MoveIt!

plugin) to deal with multi-goal end-effector tasks. To imple-

ment dual-arm manipulation planning, MoveIt! source code

was also modified. The execution of a representative motion

plan found by using CVAE, with RRT-Connect planner,

d = 0.3, and maximum planning time of 200s, can be seen in

Figure 4. Results for 100 runs with different sampling-based

planners, under default settings, can be seen in Table IV. As

seen, CVAE outperforms CGAN across all different planning

algorithms. We observe that mode collapse for CGAN is the

main reason for this result. In terms of planners, RRT and

RRTConnect planners perform better compared to KPIECE

and SBL planners, which is consistent with results in [15].

TABLE IV: Computation times and success rates for the dual-arm
constraint problem with different sampling-based motion planners

Methods CVAE CGAN

Average
Time(s)

Success
Rate (%)

Average
Time(s)

Success
Rate (%)

RRT 9.64 98.0 80.4 50.0
RRTConnect 9.88 99.0 61.05 61.0
KPIECE 12.14 100.0 103.24 41.0
SBL 105.84 81.0 140.88 23.0

C. Balance-Constrained Whole-Body Motion Task

For the balanced-constrained whole-body motion task, we

used the Pholus robot. Since MoveIt! utilizes URDF (Unified

Robot Description Format) for planning, and it is not possible

to change the root link, our planning considered 6-DOF

floating-base as root joint, which resulted in 41-dimensional

configuration space for whole-body motion planning. To

satisfy static balance, we imposed position constraints on

the feet to ensure that they stay in contact with the ground

and that the center of gravity of the whole body is always

inside the support polygon. We collected 20000 stable leg

configurations using Bio-IK to train the generative models.

The left hand is chosen to reach a bottle in a scenario

shown in Figure 5 implemented in Gazebo [36] physics-

based simulation environment, to evaluate the effect of

motion planning on static stability. The start pose and the

goal pose of the left hand can be seen in Figure 5a and 5f

respectively. It is worth noting that running the same motion

planner without sampling from our generative model of the

balance constraint manifold (i.e. randomly sampling from

free configuration space) results in the robot losing balance

and falling to the ground most of the time.

(a) t0 (initial) (b) t1 (c) t2

(d) t3 (e) t4 (f) t5 (goal)

Fig. 5: Snapshots of whole body motion plan to reach goal pose
in the presence of obstacle and satisfying balance constraint.

D. Experiment on Real Robot

To validate the practicality of the proposed framework, we

also implemented our approach on the real Pholus robot. The

task involves moving a drink can from an initial location to

a target location without spilling the drink (i.e. end-effector

orientation constraint in roll, pitch, yaw axes) in the presence

of an obstacle which the arm needs to avoid. For this task,

the left arm (7-DOF) and torso (1-DOF) joints were uti-

lized. CVAE and CGAN were conditioned on the parameter

representing different yaw angles of the wrist. We collected

a total of 10000 configurations for 4 different yaw angles

of the wrist using Bio-IK in the simulation environment.

Figure 6 shows snapshots of the robot successfully executing

a constrained motion plan that moves the drink can over the

obstacle and reaches the goal while always maintaining the

upright orientation of the can.

(a) t0 (initial) (b) t1 (c) t2

(d) t3 (e) t4 (f) t5 (goal)

Fig. 6: Snapshots of real Pholus robot moving an object to target
location while maintaining end-effector orientation constraint.

V. CONCLUSIONS

The main contribution of this work is to introduce genera-

tive models for sampling-based constrained motion planning

problems, by using them to approximate constraint mani-

folds embedded in high-dimensional spaces, and generate

constraint-satisfying configurations. Our results show that

generative models based on CGAN and CVAE are efficient

in solving the problem, even if there is significant reduction

in the dimensionality of the constraint manifold due to

obstacles. They outperform existing precomputed dataset

methods, which are unable to generate novel configurations.

Furthermore, they can be flexibly used with any sampling-

based planner. Even though CGAN gives a higher rate of

generating constraint-satisfying samples, we observe that it

suffers from the mode collapse issue. CVAE, on the other

hand, produces less constraint-satisfying samples (consistent

with results in image domain where blurry images are

generated) but is better for covering the sampling distri-

bution uniformly. As a result, CVAE gives better overall

performance for highly complex and cluttered environments.

Another observed advantage of CVAE is that it is easier and

more stable to train compared to CGAN.

ACKNOWLEDGMENT

We are grateful to Fon Lin Lai, Chong Boon Tan and Samuel

Cheong for their help in the simulation and experimental studies.

REFERENCES

[1] S. M. LaValle, “Planning algorithms,” Cambridge, U.K.: Cambridge

University Press, 2006 (available at http://planning.cs.uiuc.edu).

[2] J. J. Kuffner and S. M. LaValle, “Rapidly-exploring random trees: A
new tool for path planning,” Technical Report TR 98-11, Computer

Science Department, Iowa State University, 1998.

[3] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning:
A review,” IEEE Access, vol. 2, p. 56–77, 2014.

[4] S. M. LaValle, “Motion planning. Part I: The essentials,” IEEE

Robotics and Automation Magazine, vol. 18, no. 1, p. 79–89, 2011.

[5] Z. Kingston, M. Moll, and K. L. E., “Sampling-based methods
for motion planning with constraints,” Annual Review of Control,

Robotics, and Autonomous Systems, 2018.

[6] S. M. Lavalle, J. H. Yakey, and L. E. Kavraki, “A probabilistic roadmap
approach for systems with closed kinematic chains,” in Proceedings of

the 1999 IEEE international conference on robotics and automation

(ICRA), p. 1671–1676, 1999.

[7] I. A. Sucan and L. E. Kavraki, “On the performance of random linear
projections for sampling-based motion planning,” in Proceedings of

the 2009 IEEE/RSJ international conference on intelligent robots and

systems, p. 2434–2439, 2009.

[8] M. Stilman, “Task constrained motion planning in robot joint space,”
in Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), p. 3074–3081, 2007.

[9] D. Berenson, S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Task
space regions: A framework for pose-constrained manipulation plan-
ning,” International Journal of Robotics Research, vol. 30, no. 20,
p. 1435–1460, 2011.

[10] C. Suh, T. T. Um, B. Kim, H. Noh, M. Kim, and F. C. Park,
“Tangent space RRT: A randomized planning algorithm on constraint
manifolds,” in Proc. IEEE Conf. Robot. Autom. (ICRA), p. 4968–4973,
2011.

[11] J. M. Porta, L. Jalliet, and O. Bohigas, “Randomized path planning
on manifolds based on higher-dimensional continuation,” International

Journal of Advanced Robotic Systems, vol. 31, no. 2, p. 201–215, 2012.

[12] H. Li and N. Amato, “A kinematics-based probabilistic roadmap
method for closed chain systems,” in Algorithmic and Computational

Robotics - New Directions, p. 233–24, 2000.

[13] J. Cortes and T. Simeon, “Sampling-based motion planning under
kinematic loop-closure constraints,” in Intl. Workshop on Algorithmic

Foundations of Robotics, p. 59–74, 2004.

[14] J. Wang, S. Liu, B. Zhang, and C. Yu, “Inverse kinematics-based
motion planning for dual-arm robot with orientation constraints,”
International Journal of Advanced Robotic Systems, vol. 16, no. 2,
pp. 1–14, 2019.

[15] I. A. Sucan and S. Chitta, “Motion planning with constraints using
configuration space approximations,” in Proc. of the IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems (IROS), IEEE, 2012.

[16] F. Burget, A. Hornung, and M. Bennewitz, “Whole-body motion
planning for manipulation of articulated objects,” in Proc. IEEE Conf.

Robot. Autom. (ICRA), p. 1656–1662, 2013.

[17] B. Ichter, J. Harrisonm, and M. Pavone, “Learning sampling distribu-
tions for robot motion planning.,” in Proc. IEEE Conf. Robot. Autom.,
pp. 7087–7094, IEEE, 2018.

[18] B. Ichter and M. Pavone, “Robot motion planning in learned latent
spaces,” IEEE Robotics and Automation Letterss, 2019.

[19] B. Chen, B. Dai, Q. Lin, G. Ye, H. Liu, , and L. Song, “Learning to
plan in high dimensions via neural exploration-exploitation trees.,” in
International Conference on Learning Representations (ICLR), 2020.

[20] C. Zhang, J. Huh, and D. D. Lee, “Learning implicit sampling
distributions for motion planning.,” in Proc. of the IEEE/RSJ Int. Conf.

on Intelligent Robots and Systems (IROS), pp. 3654–3661, 2018.

[21] A. H. Qureshi, M. J. Bency, and M. C. Yip, “Motion planning
networks,” in Proc. IEEE Conf. Robot. Autom. (ICRA), 2019.

[22] R. Kumar, A. Mandalika, S. Choudhury, and S. Srinivasa, “Leveraging
experience in roadmap generation for sampling-based planning.,” in
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems

(IROS), 2019.

[23] Z. Hu, Z. Yang, R. Salakhutdinov, and E. P. Xing, “On unifying deep
generative models,” arXiv preprint arXiv:1706.00550, 2017b., 2017.

[24] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “β-vae:learning basic visual concepts
with a constrained variational framework,” in ICML, 2017.

[25] I. Goodfellow, J. Pouget-Abadie, B. X. Mirza, D. Warde-Farley,
S. Ozair, Courville, A., and Y. Bengio, “Generative adversarial nets,”
in Advances in neural information processing systems, pp. 2672–2680,
2014.

[26] M. Mirza and S. Osindero, “Conditional generative adversarial nets,”
arXiv:1411.1784, 2014.

[27] N. Kashiri et al, “A hybrid locomotion and high power resilient
manipulation platform,” IEEE Robot. Autom. Lett., vol. 4, no. 2,
pp. 1595–1602, 2019.

[28] S. Chitta, I. A. Sucan, and S. Cousins, “Moveit! [ROS topics],” IEEE

Robotics & Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.
[29] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning

library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4,
pp. 72–82, 2012.

[30] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Proc. IEEE Conf. Robot. Autom.,
vol. 2, pp. 995–1001, 2000.

[31] I. A. Sucan and L. E. Kavraki, “A sampling-based tree planner for
systems with complex dynamics,” IEEE Transactions on Robotics,
vol. 28, no. 1, pp. 116–131, 2012.

[32] L. Jaillet, J. Cortes, and T. Sim, “Sampling-based path planning on
configuration-space costmap,” IEEE Transactions on Robotics, vol. 26,
no. 4, pp. 635–646, 2010.

[33] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
and X. Chen, “Improved techniques for training gans,” arXiv preprint

arXiv:1606.03498, 2016., 2016.
[34] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv

preprint arXiv:1701.07875, 2017., 2017.
[35] P. Ruppel, N. Hendrich, S. Starke, and J. Zhang, “Cost functions to

specify full-body motion and multi-goal manipulation tasks,” in Proc.

IEEE Conf. Robot. Autom. (ICRA), 2018.
[36] N. Koenig and A. Howard, “Design and use paradigms for gazebo,

an open-source multi-robot simulator,” in Proc. of the IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems (IROS), p. 2149–2154, 2004.

