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Abstract—Accurate prediction of the Remaining Useful Life
(RUL) in machinery can significantly diminish maintenance costs,
enhance equipment up-time, and mitigate adverse outcomes.
Data-driven RUL prediction techniques have demonstrated com-
mendable performance. However, their efficacy often relies on
the assumption that training and testing data are drawn from
the same distribution or domain, which does not hold in real
industrial settings. To mitigate this domain discrepancy issue,
prior adversarial domain adaptation methods focused on deriving
domain-invariant features. Nevertheless, they overlook target-
specific information and inconsistency characteristics pertinent
to the degradation stages, resulting in suboptimal performance.
To tackle these issues, we propose a novel domain adaptation
approach for cross-domain RUL prediction named TACDA.
Specifically, we propose a target domain reconstruction strategy
within the adversarial adaptation process, thereby retaining
target-specific information while learning domain-invariant fea-
tures. Furthermore, we develop a novel clustering and pairing
strategy for consistent alignment between similar degradation
stages. Through extensive experiments, our results demonstrate
the remarkable performance of our proposed TACDA method,
surpassing state-of-the-art approaches with regard to two differ-
ent evaluation metrics. Our code is available at https://github.
com/keyplay/TACDA.

Note to Practitioners—This paper introduces TACDA, a deep
neural network crafted for domain adaptation, aimed at the
task of predicting the remaining useful life (RUL) of machinery
using time series data from multiple sensors under different
operating conditions. In particular, it utilizes limited labeled data
in one operating condition (source domain) and unlabeled data
in another condition (target domain) to train a model. This well-
trained model is capable of predicting the RUL in the target
domain based on sensor data. Unlike existing methods, TACDA
can maintain information specific to the target domain and align
the data within the same degradation stage for better adaptation
performance. A current limitation of TACDA is its need for
simultaneous access to data from both the source and target
domains for training. Future research will explore source-free
domain adaptation, which relies solely on unlabeled data from
the target domain and a model initially trained in the source
domain.

Index Terms—Domain adaptation, remaining useful life pre-
diction, target-specific information, degradation stage.

Yubo Hou, Mohamed Ragab, Min Wu, Xiaoli Li and Zhenghua Chen
are with Institute for Infocomm Research (I2R), Agency for Science, Tech-
nology and Research (A*STAR), Singapore. (Email: yubo0O2@e.ntu.edu.sg,
mohamedr002 @e.ntu.edu.sg, wumin @i2r.a-star.edu.sg, x1li@i2r.a-star.edu.sg,
chen0832@e.ntu.edu.sg)

Yubo Hou, Chee-Keong Kwoh and Xiaoli Li are with School of Com-
puter Science and Engineering, Nanyang Technological University, Singapore.
(Email: asckkwoh@ntu.edu.sg)

*Corresponding author: Zhenghua Chen

I. INTRODUCTION

Prognostic and Health Management (PHM) of industrial
systems and equipment plays a crucial role across diverse
industries, including manufacturing, aerospace, and energy.
PHM helps detect potential failures and forecast the lifes-
pan of critical components, ultimately improving operational
safety and efficiency. In aerospace, for instance, a signifi-
cant percentage of aircraft breakdowns are due to turbofan
engine failures, underscoring the urgent need for advanced
PHM solutions that can prevent catastrophic incidents and
reduce costly unscheduled maintenance. Similarly, in energy
production, unplanned downtime due to equipment failure
can lead to substantial financial losses and disrupt energy
supply, emphasizing the value of PHM in ensuring consistent
operations. By leveraging PHM, organizations can enhance
equipment reliability, reduce maintenance costs, and optimize
performance, ultimately minimizing the risk of unexpected
failures [1]. Within the domain of PHM, accurately predicting
the Remaining Useful Life (RUL) of machinery is pivotal, as it
enables proactive maintenance decisions. Various approaches
have been proposed for RUL prediction, which can generally
be classified into three categories: model-based approaches,
data-driven approaches, and hybrid approaches. Specifically,
model-based approaches focus on describing the degradation
behavior of a system using a mathematical or physics model,
which requires a strong theoretical understanding [2], [3]. As
the mechanical structure becomes increasingly complex, pre-
dicting RUL with model-based approaches can be extremely
challenging. Meanwhile, with the increasing availability of
data from deployed sensors, data-driven approaches become
popular for RUL prediction [4], [S], [6], [7]. Hybrid ap-
proaches utilize both the pre-established model of model-based
approaches and prediction ability of data-driven approaches
based on historical data, which can improve the accuracy of
prognostic result. For example, [8] integrates an unscented
Kalman filter with complete ensemble empirical mode decom-
position and a relevance vector machine, while [9] couple a
particle filter with a relevance vector machine.

Despite the promise of data-driven approaches, their success
is mainly attributed to two main assumptions, i.e., sufficient
labeled data and independent and identically distributed (IID)
data [10]. However, these assumptions are often impractical
in real industrial settings for the subsequent reasons. First, the
acquisition of annotated data (failures) incurs significant costs.
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Fig. 1: Comparisons between previous UDA methods and ours.
Left: only pursuing global alignment results in poor align-
ment. Right: considering target domain-specific information
and inconsistency characteristics of clusters reduces the feature
discrepancy.

Additionally, the degradation process of machines can span
prolonged periods, further constraining the accessibility of
faulty data [[11]. Secondly, considering the dynamics of a real
environment, a model is usually trained under one operating
condition and tested under different operating conditions,
leading to a significant performance deterioration due to the
domain shift problem [[12].

Given the aforementioned challenges, accurately predicting
the RUL for machines under various working conditions with
limited labeled data poses significant difficulties. Unsupervised
domain adaptation (UDA) is a promising technique that fa-
cilitates knowledge transfer from a labeled source domain to
a distinct yet related unlabeled target domain [12]. Recently,
there has been an increased focus on UDA for RUL prediction
task. Predominantly, the existing methods endeavor to identify
domain-invariant features to mitigate the distribution shift
problem, either through adversarial training [13], [14], [10] or
by minimizing the statistical distance between domains [15],
[L6], [[17]. Despite the promise of these methods in addressing
the domain shift problem with scarce target labels, they still
exhibit the following limitations.

o Lack of target-specific information: Solely pursuing
domain-invariant features does not assure optimal perfor-
mance in the target domain [18]], [19]]. Enforcing target
domain features to globally resemble the source domain
features without appropriate constraints may lead to the
removal of target-specific information.

« Inconsistent characteristics for degradation stages:
RUL degradation can be categorized into distinct stages
based on degradation speed [20]]. Each stage possesses
unique characteristics. Existing methods bring the two
domains closer globally, which may blend samples from
different degradation stages [21l], [22]. For instance,
early-stage degradation in the target domain might be
aligned with late-stage degradation in the source domain,
resulting in misalignment.

As presented in Fig. [T] (left), the above-mentioned lim-
itations could potentially hinder the overall model perfor-
mance. In response to these challenges, we propose a novel
target-specific adaptation and consistent degradation alignment

(TACDA) approach for machine RUL prediction across dif-
ferent working conditions. Specifically, to tackle the lack of
target-specific information issue, we design an auto-encoder
based domain alignment module with a soft dynamic time
warping (soft-DTW) loss to preserve target domain informa-
tion for time series sensory data. To address the ignore of
inconsistency characteristics for the degradation stage prob-
lem, we not only make domain alignment on global data
but also make degradation alignment between source and
target domains. Through extensive experimentation, we have
thoroughly evaluated the performance of our proposed TACDA
method in accurately predicting the RUL of machines across
diverse operating conditions.

The main contributions of this study are listed as follows.

o We propose an innovative approach called TACDA, which
considers both the target-specific adaptation and consis-
tent degradation alignment for RUL prediction.

o We leverage the auto-encoder to preserve target-specific
information, while learning invariant representations. In
particular, we employ soft-DTW instead of mean squared
error as reconstruction loss within the auto-encoder to
preserve target-specific information.

e We propose a clustering and pairing strategy, which
clusters the data into different degradation stages and
then aligns the data within the same degradation stage
for better adaptation performance.

II. RELATED WORKS
A. Deep Learning for RUL Prediction

Deep learning for RUL prediction is broadly categorized
into two types: feed-forward neural networks and recurrent
neural networks (RNNs). In [23], convolutional neural net-
works (CNNs) was utilized to extract features at multi-scale for
detecting fault growth and predicting machine RUL. In [24],
a CNN network was proposed with a joint loss function
to simultaneously identify faults and provide predictions for
RUL. Another study [25] employed a Deep Belief Network
(DBN) for feature extraction and RUL prediction.

For dynamic systems, RNNs offer sequential modeling ca-
pabilities. Among RNN architectures, long short-term memory
(LSTM) networks have gained significant popularity due to
their ability to capture long-term dependencies and overcome
the vanishing gradient problem associated with traditional
RNN:Gs. In [26], a bidirectional LSTM (BiLSTM) methodology
was introduced, which is enhanced with auxiliary features to
forecast the RUL across diverse operational conditions. The
bidirectional nature of BiLSTM allows it to capture dependen-
cies from both past and future time steps. In [27], an attention-
based LSTM approach was developed for RUL prediction.
This method dynamically selects important features using
attention mechanisms, resulting in accurate RUL predictions.
However, these methods cannot work well with insufficient
labeled data and non independent and identically distributed
data in real world application.

B. Unsupervised Domain Adaptation for RUL Prediction

Unsupervised Domain Adaptation (UDA) for RUL predic-
tion aims to reduce labeling costs by training neural networks
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to transfer knowledge from a labeled source domain to an
unlabeled target domain. Existing UDA methods focus on
minimizing domain discrepancy to achieve high performance
on the target domain. These methods can be categorized into
two branches: metric-based and adversarial-based methods.

Metric-based methods align the feature representations
of source and target domains by leveraging statistical dis-
tances. Deep Domain Confusion (DDC) [15], AdvSKM [28]]
and FDMTCN [29] utilize the maximum mean discrepancy
(MMD) to mitigate domain differences. To address distribu-
tional shifts, TCNN [16] incorporates a multi-kernel MMD
approach for better alignment between source and target
domains. Correlation alignment (CORAL) [30] aims to re-
duce the covariance shift between feature distributions across
domains. Additionally, in [17], a hybrid strategy combining
the contractive denoising autoencoder and transfer component
analysis (TCA) was implemented.

Adpversarial-based methods use domain discriminator net-
works to encourage the feature extractor to learn domain-
invariant representations. The domain adversarial neural net-
work (DANN) [10], [31] employs a gradient reversal strat-
egy to facilitate adversarial training between the domain
classifier and the feature extractor. Similarly, the adversar-
ial domain adaptation for remaining useful life prediction
(ADARUL) [13] adopts a traditional GAN loss with label
flipping to achieve domain-invariant feature learning. Adver-
sarial regressive domain adaptation approach [14] used dis-
criminator and bi-regressors to align distributions for infrared
thermography-based RUL prediction. In [32], a transformer-
based method was proposed which leverages feature-level
and semantic-level discriminators for distribution alignment.
In [33], a method was proposed that integrates clustering for
sensor selection and ensemble technology for transfer learning.
However, these methods do not incorporate target-specific
information during the process of learning domain-invariant
features, which harms the performance in target domain.
In [7], a method was proposed that leverages an adversarial
framework that separately aligns the marginal distributions of
different operation phases between source and target domains.

III. METHODOLOGY
A. Problem Formulation

We denote a source domain with Ng labeled samples
{Xi, gj;\%}f\fl and a target domain with N unlabeled samples
{X53:n, where X4 € RM*L and Xt € RM*XL are both
multivariate time series data consisting of M sensors and L
time steps. y% is the RUL label. We aim to transfer knowledge
from labeled source domain to unlabeled target domain and
then improve the performance of RUL prediction on the target.
Table [[] provides a summary of the notations employed in this

paper.

B. Overview

The overall structure of our proposed TACDA method is
shown in Fig. 2| TACDA consists of three main components:
source encoder Eg, target encoder Er, and shared predictor
R. First, we pretrain the source encoder Eg and predictor

TABLE I: List of notations.

Notation  Definition

Xg/Xr  source/target data

Ys source RUL label
Ng /N7  number of source/target samples
fs/fr source/target features
Eg/Er source/target encoder
Dt target decoder

D domain discriminator
R predictor

M number of sensors

L sequence length

R to learn the RUL distribution from the source domain.
Then, in the adaptation phase, we train the target encoder Er.
This adaptation phase is divided into two stages. In the first
stage, both source and target data are fed to the target-specific
adaptation (TA) module to preserve target-specific information
while learning invariant representations. To ensure consistent
degradation alignment, in the second stage, source and target
data are clustered, respectively. Then, data groups from source
and target domains are paired by similar status. In the end,
multiple paired source and target data are fed into the TA
module successively for fine-tuning the model parameters from
the first stage. Once training is complete, we use the well-
trained target encoder F'7 and predictor R to estimate RUL in
the target domain. The following sections will introduce each
module in detail.

C. Pretraining on Source Domain

During this phase, the objective is to train a model using the
labeled source domain data to have the knowledge about the
RUL prediction task. Specifically, a source encoder Eg and
RUL predictor R are trained on source data Xg. The source
encoder extracts features from source data: fg = Fg(Xg).
The RUL predictor estimates RUL value according to the
extracted features. The source encoder and the RUL predictor
are optimized using the mean square error loss:

1
Lmse = X i Az 27 1
7 ;(y 7) (1)
where 3; = R(Eg(Xg)) is the estimated RUL value, y; is the
true RUL label, and Ng represents the number of samples in
source domain.

D. Target-specific Adaptation

Given the pretrained source model, the focus lies in achiev-
ing adaptation upon the unlabeled target data. To do so,
the target-specific adaptation module is proposed, containing
adversarial adaptation for domain invariant feature and the
decoder for preserving target-specific information. The target-
specific adaptation module, depicted in Fig. [2] (left), comprises
a trained source encoder Eg, a target encoder Ep, a target
decoder D7 and a domain discriminator D. The FEr is
initialized with the weights of Eg which was pre-trained on
labeled source data {Xg,ys}. The source domain feature fg
and target domain features fr are extracted from source data
X and target X7 via Eg and Er, respectively. Then extracted
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Fig. 2: Our proposed TACDA approach. Target-specific Adaptation (TA) learns the target encoder Er, the target decoder Dr
and discriminator D via optimizing the adversarial loss L4, and the soft-DTW loss Lsprw . Specifically, TA is applied in
two rounds: 1st Round DA: All source and target data are fed into TA for global domain alignment. 2nd Round DA: Clustered
and paired source-target data (grouped by degradation stages, e.g., stage 1, 2, 3) are iteratively aligned in a loop (stage 1 —
stage 2 — stage 3) for stage alignment. After the 2nd round DA, the optimized Er is directly transferred to Step 3.

features fs and fr are fed into the domain discriminator D to
minimize their discrepancy. Simultaneously, the target features
fr are passed through the decoder D to get reconstructed tar-
get data X/.. The difference between X7 and X/, is computed
to preserve target-specific information during alignment. The
formalized procedure of the target-specific adaptation module
in our approach is outlined in Algorithm [I} The detailed
procedures are described in the subsequent paragraphs.

1) Adversarial Adaptation: The training procedure of ad-
versarial adaptation between the domain discriminator D and
the target encoder Er can be defined as follows:

r%iTn max Lody =Exsps [logD(Es(Xs))]
+ Expopyp [log(1 — D(Er(X7)))]. (2

The target encoder Frp is trained to minimize L,4,, while
the discriminator D is updated in an adversarial manner to
maximize L,q,. Consequently, the trained target encoder Ep
becomes capable of extracting features fr that have minimum
disparity compared to the source features fg.

2) Target-specific Decoder: Adversarial domain adaptation
demonstrates efficacy in learning target domain features that
exhibit invariance with respect to the source features. Nev-
ertheless, in its pursuit to minimize the adversarial loss, it
runs the risk of removing task-specific information from the
target features, thereby potentially compromising performance
in the target domain. Consequently, it is imperative to preserve
target-specific information throughout the process of domain
adaptation. To achieve this objective, we develop an auto-
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Fig. 3: Two warping paths (red and green, as well as the top-
left and bottom-right entries) between two time series of length
4. The cost of a warping path is determined by the cumulative
sum of difference § visited along the path.

encoder based on soft-DTW loss [34], which is robust to the
shifts and dilatation across the time dimension compared with
conventional MSE loss.

Soft-DTW measures the similarity between X1 and X/ by
considering all possible warping path mapping the elements of
X to X7.. Fig. 3| shows an example of warping path between
two time series of length 4. Soft-DTW can be expressed as
follows:
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Loprw = —log Y e ABXTXD) (3
A€AL L

where ~ is a smoothing parameter, A(Xrp, X7}) =
[0(xi, 2}))i; € RE*E, §(x;, 2) is the quadratic Euclidean dis-
tance and (A, A(Xr, X/)) is inner product. The set Az 1 C
{0, 1}E%E represents the collection of (binary) warping paths
on an L x L matrix. These paths connect the upper-left matrix
entry (1, 1) to the lower-right one (L, L) using exclusively J,
—, and Y\, moves.

Algorithm 1: Target-specific Adaptation (TA)

Input: Source domain: {Xg, ys}, Target domain: X
Output: Trained target encoder Er, Trained target
decoder D, Trained discriminator D
1 Eg < Pretrained source encoder
2 Er < Initialized with Eg parameters
3 Dy < Target decoder
4 D < Domain discriminator
5 for number of iterations do
6 fs < Es(Xs) // Extract source
features
7 fr < Ep(Xr) // Extract target
features
8 Feed fs and f7 to D
9 Calculate adversarial loss L4, using Eq.
10 Update D by L,40
11 X < Dp(fr) // Reconstruct target
sample
12 Calculate soft-DTW loss Lsprw using Eq.
13 Update Dr by Lsprw
14 Update Ep by Logy + ALsprw

return Er, D, D

-
W

E. Consistent Degradation Alignment

The target-specific adaptation module aligns the distribu-
tions of source and target data on a global scale. However,
it overlooks discrepancies in characteristics across different
degradation stages, leading to suboptimal alignment. To ad-
dress this issue, we propose a consistent degradation alignment
module to ensure alignment between analogous degradation
stages during the adaptation phase. Initially, we classify the
degradation of both source and target domains into three stages
based on their degradation speed: sluggish, accelerated, and
terminal.

1) Identifying Source Degradation Stages: For the source
domain data, we partition each engine’s lifecycle into three
degradation stages using available labels. To define precise
stage boundaries, we compute a health index (HI) through
a linear combination of critical sensor readings, following
methodologies in [L1]], [20]. As illustrated in Fig. [Z_f[, which
plots the HI trajectory of a representative engine against oper-
ational cycles, this index quantifies progressive degradation
by synthesizing multi-sensor signals. The HI trajectory is
analyzed in conjunction with RUL labels to identify distinct

sluggish

accelerated

health score
o
vl
N

terminal

health index
—— estimated trend

o
w
o
D -

0 20 0 60 80 100 120

cycle number

Fig. 4: Three degradation stages categorized by the health
index.

second derivative of health score

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
normalized cycle number

Fig. 5: Second derivative of health index.

degradation phases. The second derivative of the averaged HI
reflects how the rate of health degradation (first derivative)
changes over normalized cycle numbers.

As outlined in Algorithm [2| we begin by discretizing the
normalized RUL values y; € [0,1] into K equally spaced
bins. Each bin k£ accumulates the health-index observations h;
whose corresponding y; falls into that bin, and we track the
count of samples per bin to enable averaging. After iterating
over all N samples, we obtain an average health index hj, at
each bin. To reduce noise and highlight meaningful curvature
in the degradation profile, we apply a Gaussian smoothing
filter to the sequence {hy}X_,. Finally, we approximate the
second derivative of HI. In our experiments, we set K = 100.

As shown in Fig. 5] we observe varying degradation rates
across the lifecycle: initial slow decline transitions to acceler-
ated deterioration before toward failure. Based on this pattern,
we empirically define three lifecycle intervals:

o Sluggish stage (0%—-33%): The second derivative main-
tains negative values (close to zero), indicating stable
system dynamics. This results in a slow decrease of the
HI.

o Accelerated stage (33%—85%): The second derivative
shows persistent decrease (becoming more negative). This
drives accelerated downward trends in the first derivative,
leading to decelerating decay patterns in the HI curve.

o Terminal stage (85%—100%): The second derivative be-
gins increasing (less negative) while remaining in neg-
ative territory. This causes HI decay to approach linear



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. X, NO. X, X X 6

Algorithm 2: Compute Second Derivative of the Av-
eraged Health Index

Input: RUL label: y € [0, 1], Health//index: h
Output: Second Derivative of HI: h
Initialize bins bq,...,bg < 0
Initialize counts c¢q,...,cx < 0
for i < 1 to N do
k <+ I_yl X KJ
by, < br + h;
cL ¢ +1
for k + 1 to K do
L hi + bk/ck

9 Apply Gaussian smoothing to the sequence {hj}&_,
—I! —_— —_— — —_

10 B = (k) — Bk — 1)) — (Blk — 1) — Tk — 2))
11 return 7

A i A W N =

e 2

behavior with highest degradation rate.

2) Identifying Target Degradation Stages: In the target
domain, classifying into the three degradation stages becomes
a challenge due to the absence of labels. To address this, we
propose an unsupervised clustering approach based on the k-
means algorithm for the target domain data. To consider the
temporal sequences in the data, soft dynamic time warping
is integrated as a distance metric in the k-means algorithm.
After the clustering process, it can be challenging to ascertain
the specific degradation stage (e.g., sluggish, accelerated, or
terminal) of each target cluster in the absence of labels. We
posit that there is a correlation between degradation speed and
the variance of sensor readings. Specifically, a faster degrada-
tion speed should correspond to higher variance values, and
conversely, slower degradation should link to lower variance
values. In our study, we begin by computing the variance for
each sensor within its respective cluster and sum up variance
of all sensors to get the variance of its respective cluster. This
is represented by:

1 N.L
AR™ = C— ) 4
VAR? = < ;(:c f1e)?, 4)

where N, is the number of samples in a cluster ¢, L is the
sequence length and p. is the mean value of all element in
the cluster. Subsequently, we determine the overall variance
for each cluster as:
M
VAR, = > VAR )
m=1

Finally, we categorize the clusters based on overall variance
values. As such, the cluster with the highest variance corre-
sponds to the terminal stage, while the cluster with the lowest
variance indicates the sluggish stage.

Due to the increase in computational cost for this clustering
approach, we conduct a theoretical analysis of the computa-
tional complexity. The theoretical time complexity of the K-
means using soft-DTW as the metric is dominated by two
key components. First, the pairwise soft-DTW computation

between two M dimensional time series of length L requires
O(M - L?) operations, as it involves filling a L x L dynamic
programming matrix with M dimensional distance calcula-
tions at each cell. During the cluster assignment step, all
N samples are compared to each of the K cluster centers
across [ iterations. This results in a total complexity of
O(I-N - K -M - L?) for distance calculations. Assuming the
center update process has negligible complexity compared to
distance computations, the simplified overall time complexity
becomes O(I - N - K - M - L?).

F. Overall Objective

In the TACDA algorithm (Algorithm [3), the primary ob-
jective is to fine-tune the target encoder, Ep, for the RUL
estimation of equipment. As indicated in Line 1, the algorithm
begins with the pretraining of the source encoder Eg and the
predictor R using the source domain data (Xg,ys). After
pretraining, the algorithm starts with a domain adaptation
utilizing both source and target domains. Following this, data
from both domains are clustered into degradation stages—the
source domain based on its inherent labels (Line 3) and the
target domain using a combination of K-means and variance
(Line 4). A subsequent refinement occurs through a second
round of domain adaptation for each degradation stage (Lines
5-6). The culmination of the process is the extraction of a
trained Ep, which, when coupled with an RUL predictor R,
can proficiently estimate the RUL for the target domain.

Algorithm 3: Our Proposed TACDA

Input: Source domain: {Xg,ys}, Target domain: X
Output: Trained target encoder Er

1 Eg, R < pretrain(Xg,ys) using Eq.

2 Ep,Dp,D <+ TA(Xs,Xr,Es) // Algorithm 1

for 1st round DA

3 Xgs1, X592, Xgs < clustering Xg by degradation stage
based on yg

4 Xp1, X7, X3 < clustering X by degradation stage
based on K-means and variance

5 for c in number of stages do

6 ET,DT,D%TA(XS(;,XTC,Es) // 2nd
L round DA

7 return Er

IV. EXPERIMENTS
A. Preparation of Data

We employ the C-MAPSS benchmark dataset to evaluate
the performance of our proposed method. The C-MAPSS
dataset includes operational data from four different turbofan
engines. As presented in Table [l each engine has a unique
set of operational conditions and fault modes, consisting of
21 sensors deployed in multiple locations to monitor the
health of an engine. We pre-process the datasets following
the data preparation [19]]. The pre-processed data has selected
14 sensors and label is remaining useful life circle of engines.
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TABLE II: Details of C-MAPSS dataset.

Sub-dataset FD001  FD002  FDO003  FD004
# Engine units for training 100 260 100 249
# Engine units for testing 100 259 100 248
# Operating conditions 1 6 1 6

# Fault modes 1 1 2 2

B. Experimental Setting

All experiments run five times and the average results are
shown to prevent the effect of random initialization. Addition-
ally, we set batch size as 256, optimizer as Adam, learning rate
as 5e-5 for the target encoder and the domain discriminator.
Since the decoder is trained from scratch during the adaptation
process, we opt a higher learning rate of Se-3 specifically for
the decoder. And we set the smoothing parameter « for soft-
DTW as 0.1. Furthermore, we built and trained our model
based on Pytorch and NVIDIA GeForce RTX A4000 GPU.
We adopt root mean square error (RMSE) and Score [19].
The lower the two indicators are, the better the model is.

The RMSE metric is defined as follows:

(6)

where g; and y; represent the estimated RUL and true RUL
respectively.

The RMSE metric assigns equal importance to both early
and late RUL predictions. However, in prognostics applica-
tions, late RUL predictions have more detrimental conse-
quences for the systems. In order to address this concern,
the Score metric is employed, which imposes a more se-
vere penalty for late RUL predictions. The Score metric is
expressed as follows:

_ @71*3117 17
Score; = ¢ _ ¥ < Ui 7

Yi 1

Yi—Yi ~
e 1 — 1y >y,

N
Score = Z Score;. )

i=1

C. Comparison with State-of-the-Art Methods

We compare proposed TACDA with SOTA UDA meth-
ods, including DDC [35]], Coral [30], ADARUL [13],
CLUDA [36], SDAT [37]], CADA [19], DARE-GRAM [38]]
and WIDAN [39]]. For fair comparisons, we adopt the same
feature extractor (5 layers BILSTM and 32 hidden dimensions)
and predictor for these methods, each of which runs five times
to show average results. Further, the results of source only
(Source) are also compared.

Table shows the RMSE and Score results respectively
in 12 cross-domain scenarios for RUL prediction. From the
results, we observe that TACDA achieves the best averaged
performance across all scenarios with regards to both RMSE
and Score, whose improvement is more than 10% and 32%
for RMSE and Score compared with the second best method.
Specifically, TACDA outperforms all the SOTA methods in
the 7 scenarios for RMSE and in the 9 scenarios for Score.

For example, TACDA outperforms the second-best method
by 55% in FD003—FDO001, by 39% in FD002—FDO004, and
by 32% in the FDO03—FDO002. Furthermore, TACDA attains
the second-best performance in 4 scenarios with regards to
RMSE and 1 scenario Score. Our proposed TACDA achieves
the superior performance with the ability of preserving target
domain specific information.

D. Ablation Study

1) Component Contribution Study: To validate the contri-
bution of key components, we perform the ablation study for
our proposed TACDA. We derive four variants of TACDA,
namely, “Source”, “w/o C”, “w/o Dp” and “w/o C-Dp”.
Specifically, the variant “Source” denotes the unadapted ver-
sion of our model. “w/o C” is the variant without using the
2nd round DA (i.e., no fine-tuning with the clustered data) for
consistent degradation alignment. The variant “w/o D7 refers
to our adversarial adaptation without using the target decoder
Dr for target-specific adaptation. The last variant “w/o C-
D7 uses the adversarial loss only, i.e., it has neither fine-
tuning step or target decoder Dr. It is worth noting that “w/o
C-D7r” is the same as ADARUL [13].

Table [TV] shows presents the comparative outcomes between
TACDA and its variants. Our observation reveals that the
“Source” exhibits the poorest performance, implying the sig-
nificant disparity between the source and target domain. The
proposed TACDA suppresses the “w/o C”, “w/o Dp” and “w/o
C-Dyp” in around 35%, 39% and 72%, regarding the average
improvements in terms of Score. These results demonstrate
the effectiveness of the decoder, as well as the clustering and
pairing strategy for the 2nd round DA for RUL prediction.

2) Reconstruction Loss Study: To verify the effectiveness
of soft-DTW loss for domain information preservation, we
perform comparison between MSE and soft-DTW loss in our
proposed TACDA without degradation alignment. As shown
in Fig. [6] soft-DTW outperforms MSE in 9 scenarios in terms
of RMSE and in 10 scenarios in terms of Score. The rationale
underlying this phenomenon resides in the capacity of soft-
DTW to effectively capture temporal sequence patterns.

E. Soft-DTW Contribution Analysis

We conducted a sensitivity analysis of the hyperparameter
A to investigate the impact of soft-DTW on the proposed
method. Several experiments were carried out using various
values of A, ranging from 0.001 to 1 with intervals of 10x.
Given that the initial magnitude of the soft-DTW surpasses
the adversarial loss by a factor of 1000 during the training, it
is advisable to constrain the weight parameter A to a value
not exceeding 1. Fig. [7] and Fig. [§] show the performance
of TACDA under different values of A\ after the 1st and 2nd
rounds of DA. The results indicate that the proposed method
demonstrates stability across most cross-domain scenarios in
terms of RMSE. However, we observed that the performance
of TACDA tends to degrade when A is either too small or
too large in terms of Score. For instance, in the FD0O04 —
FDOO01 scenario, TACDA exhibits the worst performance when
A is set to 1 during the Ist round of DA, and when A is set
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TABLE III: Comparison of the proposed TACDA against benchmark approaches (Up: RMSE; Down: Score). Note that F1 is
short for FDOO1, and F1—F2 refers to the scenario where FD0O1 is the source domain and FD002 is the target domain. Bold
indicates the best result, and underline indicates the second-best result.

Methods F1—F2 | F1-F3 | F1—-F4 | F2—F1 | F2—F3 | F2—F4 | F3—FI | F3—F2 | F3—F4 | FA—Fl | FA—>F2 | FA—F3 | Avg.

Source 20.62 54.12 36.80 15.00 3491 37.65 38.31 46.10 31.44 37.66 32.98 19.25 | 33.74
Coral 20.29 38.53 34.04 13.55 3291 33.53 34.24 36.99 30.68 38.68 31.94 16.37 | 30.15
DDC 20.08 39.26 34.14 13.53 33.40 33.47 30.31 30.60 24.19 37.08 31.78 16.06 | 28.66
ADARUL 20.26 21.73 31.16 13.31 28.98 33.08 24.33 24.02 21.68 26.41 25.66 15.02 | 23.80
CLUDA 44.36 39.17 44.71 40.07 39.17 44.71 40.09 44.45 44.72 40.14 44.38 39.19 | 42.10
SDAT 20.03 39.18 34.85 17.94 35.92 31.74 23.90 32.11 23.16 19.81 20.53 17.22 | 26.37
CADA 20.42 38.61 31.29 13.44 33.58 35.26 20.39 20.85 22.03 20.26 18.62 14.34 | 24.09
WIDAN 20.90 37.78 30.29 14.78 3591 30.05 21.10 32.89 22.79 25.54 31.78 16.78 | 26.66
DARE-GRAM | 15.70 36.32 30.03 17.44 30.46 31.47 21.23 22.19 24.56 20.95 24.50 1597 | 24.24
TACDA 19.39 23.16 30.38 13.11 21.86 26.82 18.90 19.72 20.46 19.06 19.54 15.51 | 20.66
Source 5454 26074 | 20782 536 4892 19796 4991 72309 | 40770 | 99469 | 62301 2461 | 29986
Coral 3312 8887 14481 315 4762 12986 | 17364 | 105354 | 33777 | 114609 | 63330 1246 | 31702
DDC 4062 12966 | 16324 351 5156 14969 | 20088 | 58604 | 31221 90087 | 60334 1323 | 26290
ADARUL 3624 1753 11788 330 3815 16077 6250 31462 7062 14645 | 35174 754 11061
CLUDA 22351 5869 18270 6000 5963 18655 5797 30091 | 20506 6602 29771 7100 | 14748
SDAT 2343 5490 19432 762 10000 | 10587 2460 27984 4399 1241 2793 844 7361

CADA 4156 10540 | 12050 321 5484 19766 1856 16760 4134 1755 4949 913 6890

WIDAN 2787 6388 10121 353 4863 6983 5733 7591 6540 2950 7142 554 5167

DARE-GRAM | 4438 8765 8267 740 4057 9819 2139 7053 3675 1569 2944 566 4503

TACDA 2183 1678 10563 298 1901 5948 834 4770 2422 966 4564 799 3077

TABLE IV: Ablation study for the proposed TACDA (Up: RMSE; Down: Score). Note that C' denotes the clustering and
pairing strategy for consistent degradation alignment, while Dy is the target decoder.

Methods F1—F2 | F1-F3 | F1—»F4 | F2—F1 | F2—F3 | F2—F4 | F3—Fl | F3—F2 | F3—F4 | F4A—Fl | FA—F2 | FA—F3 | Avg.
Source 20.62 54.12 36.80 15.00 3491 37.65 38.31 46.10 31.44 37.66 32.98 19.25 33.74
wlo C 19.12 23.40 31.07 13.75 27.47 31.00 21.21 20.93 22.05 21.48 20.11 16.16 22.31
w/o D 20.33 21.03 31.12 13.25 26.32 26.36 21.70 22.46 21.85 27.67 23.83 17.04 22.75
wlo C-Dr 20.26 21.73 31.16 13.31 28.98 33.08 24.33 24.02 21.68 26.41 25.66 15.02 23.80
TACDA 19.39 23.16 30.38 13.11 21.86 26.82 18.90 19.72 20.46 19.06 19.54 15.51 20.66
Source 5454 26074 20782 536 4892 19796 4991 72309 40770 99469 62301 2461 29986
w/o C' 2288 1786 10767 366 2865 10558 2275 9635 6428 1952 7205 1050 4765
w/o Dp 3353 1634 11627 301 4808 6268 1876 9070 3824 2798 13715 1122 5033
wlo C-Dr 3624 1753 11788 330 3815 16077 6250 31462 7062 14645 35174 754 11061
TACDA 2183 1678 10563 298 1901 5948 834 4770 2422 966 4564 799 3077

to 0.001 during the 2nd round. Similarly, in the FD002 —
FDO003 scenario, TACDA performs poorly when A is 0.001 in
the 1st round, and when )\ is 1 in the 2nd round. To achieve
satisfactory performance, we recommend setting the value of
A as 0.1. The potential reason for the consistency observed in
RMSE while encountering variability in the Score metric could
be attributed to the temporal influence exerted on the Score
metric during the utilization of soft-DTW temporal alignment.

To highlight the role of soft-DTW as a reconstruction
loss in preserving target-specific information, we analyzed
its progression over training epochs during both the 1st and
2nd rounds of DA. As illustrated in Fig. 0] the soft-DTW
loss exhibits a sharp decline in the initial epochs of the 1st
round of DA, followed by a gradual stabilization as training
converges. Since soft-DTW serves as a reconstruction loss,
this behavior underscores the effectiveness of the proposed
approach in maintaining target-specific information while fa-
cilitating cross-domain alignment.

In the 2nd round of DA, during the initial stages, the soft-
DTW loss values in the sluggish stage and accelerated stage
are higher than those in the moderate stage, indicating that the
information from the sluggish and accelerated stages was not

well preserved during the Ist round of DA. Through the 2nd
round of DA, the soft-DTW loss continues to decrease across
data from various degradation stages, further demonstrating its
ability to capture and preserve distinct target-specific charac-
teristics at different stages.

F. Insufficient Degradation Data Analysis

In practical real-world applications, acquiring data in the
failure condition from target domain for training purposes
poses challenges, which is prone to negative adaptation if
match the whole source domain to the target domain. To
examine the impact of insufficient degradation data for our
proposed TACDA, we conducted an analysis. Specifically, we
performed experiments by excluding data with accelerated
degradation stage, from the dataset during training for domain
adaptation. The results, depicted in Fig. [I0] highlight the
stability of the proposed method across various cross-domain
scenarios. The rationale for this lies in the fact that degradation
alignment exclusively aligns the distributions of source and
target data in the shared degradation stage, thereby mitigating
the influence stemming from inadequate degradation data
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within the target domain, such as poor alignment due to align
data of accelerated stage to the sluggish stage.

G. Analysis of Time Utilization and Resource Consumption

We conducted additional experiments to analyze the tem-
poral efficiency and resource consumption of our proposed
method under four scenarios, and compared with the second-
best method, i.e., DARE-DRAM. To ensure fair comparison,
both TACDA and DARE-DRAM are trained for 180 epochs.
As demonstrated in Table [[V] our method trains faster in two
scenarios and is marginally slower in the other two. And
TACDA requires a 10% more GPU memory over DARE-
DRAM. This increased memory usage is primarily due to
the additional parameters and computations introduced by
the decoder and discriminator, which allows the model to
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Fig. 10: The insufficient degradation data analysis for exclud-
ing the accelerated degradation stage from the training dataset.

preserve target-specific information during adaption. These
results demonstrate that TACDA delivers superior performance
without significantly higher computational costs, maintaining
practical deployability while advancing state-of-the-art results.

TABLE 1V: Comparison of Time Utilization and Resource
Consumption

DARE
Method ‘ TACDA ‘ _GRAM
F1—F2 979.4 784.8
Time F1—F3 571.8 482.9
(second) | F2—F3 575.0 1011.6
F2—F4 1127.5 1141.2
GPU Memory (MiB) ‘ 1792 1629

V. CONCLUSION

In this paper, we introduced a novel approach called TACDA
for the automatic discovery of domain-invariant features,
while simultaneously preserving target-specific information
and aligning the data within the same degradation stage in
RUL prediction. The TACDA method was developed based
on an adversarial auto-encoder domain adaptation framework,
incorporating a soft-DTW loss and a data selection mechanism
utilizing soft-DTW based K-means clustering and variance. To
evaluate the effectiveness of the proposed TACDA method, ex-
tensive experiments were conducted, including a comprehen-
sive comparison with various state-of-the-art domain adapta-
tion techniques. The experimental results demonstrated that the
TACDA method outperforms all other state-of-the-art methods
significantly. Additionally, an ablation study was conducted to
demonstrate the effectiveness of the key components in the
domain adaptation process.
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