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Abstract

Motivation: RNA is implicated in numerous aberrant cellular functions and disease progressions, highlighting the crucial importance of RNA-
targeted drugs. To accelerate the discovery of such drugs, it is essential to develop an effective computational method for predicting RNA-small
molecule affinity (RSMA). Recently, deep learning-based computational methods have been promising due to their powerful nonlinear modeling
ability. However, the leveraging of advanced deep learning methods to mine the diverse information of RNAs, small molecules, and their inter-
action still remains a great challenge.

Results: In this study, we present DeepRSMA, an innovative cross-attention-based deep learning method for RSMA prediction. To effectively cap-
ture fine-grained features from RNA and small molecules, we developed nucleotide-level and atomic-level feature extraction modules for RNA and
small molecules, respectively. Additionally, we incorporated both sequence and graph views into these modules to capture features from multiple
perspectives. Moreover, a transformer-based cross-fusion module is introduced to learn the general patterns of interactions between RNAs and
small molecules. To achieve effective RSMA prediction, we integrated the RNA and small molecule representations from the feature extraction
and cross-fusion modules. Our results show that DeepRSMA outperforms baseline methods in multiple test settings. The interpretability analysis

and the case study on spinal muscular atrophy demonstrate that DeepRSMA has the potential to guide RNA-targeted drug design.
Availability and implementation: The codes and data are publicly available at https://github.com/Hhhzj-7/DeepRSMA.

1 Introduction

RNA is essential to the execution of various biological func-
tions such as transcription and translation (Caprara and
Nilsen 2000). The disruption of structure-related regulatory
activities in many RNAs can result in various diseases
(Costales et al. 2020), emphasizing their potential as drug tar-
gets. Due to the upstream position of RNA in the translation
pathways, it is considered a desirable target for disease treat-
ment. For example, inhibiting mRNAs with drugs can pre-
vent the expression of downstream genes. Specifically,
risdiplam is the first FDA approved small-molecule drug that
directly targets human RNA to treat spinal muscular atrophy
(SMA) (O’Keefe 2020). Risdiplam binds to the precursor
messenger RNA (pre-mRNA) of the surviving motor neuron
2 (SMN2), consequently augmenting the synthesis of SMN
proteins, which are pivotal for motor neuron functionality
(Ratni et al. 2018). Similar to proteins, when an RNA exhib-
its pockets for binding to small molecules, it has the potential
to act as a drug target (Warner ef al. 2018). Therefore, in or-
der to accelerate the development of RNA-targeted drugs, it
is essential to predict the binding affinity between RNAs and
small molecules (Childs-Disney et al. 2022).

Experimental affinity measurement methods provide valu-
able bioactivity data for small-molecule ligands. However,
such methods face several challenges, including high costs
and significant time requirements (Kairys et al. 2019).
Computational methods can complement experimental meth-
ods by reducing the number of compounds to be tested.
Previous computation methods can be divided into two catego-
ries. The first strategy is to directly evaluate the affinity between
RNA and small molecule based on their features through a
scoring function. For example, Guilbert and James (2008)
docked the ligands by minimizing the root-mean-square-
deviation-driven energy. Feng and Huang (2020) proposed
ITScore-NL, which evaluates nucleic acid-ligand interactions
by stacking interactions and electrostatic potentials. The second
strategy is to use machine learning algorithms to extract
features from RNA and small molecule for binding affinity pre-
diction. For example, Grimberg et al. (2022) used deep convo-
lutional networks, linear regression, and classification trees to
predict small molecules binding to ribosomal hairpin 91. Szulc
et al. (2023) developed a software FingeRNAt, which can en-
code several noncovalent interactions of RNA and ligand as fin-
gerprints and combine with machine learning method to train a
separate model for each molecular target to predict the RNA-
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small molecule interaction. Krishnan et al. (2024) proposed
RSAPred that categorizes RNA into six subtypes and performs
feature selection for each subtype. It then trains multiple
affinity prediction models with distinct features for different
RNA subtypes.

While previous methods have made significant strides in
RNA-small molecule affinity prediction, there still exists am-
ple room for further development. First, most of these meth-
ods focus on predicting the affinity for a specific RNA
(Grimberg et al. 2022) or a specific RNA subtype (Krishnan
et al. 2024), but they are not generalized for other RNAs.
Second, various data modalities can help a model learn fea-
tures from different perspectives, while existing methods typi-
cally consider either the graph or sequence modality of RNA
and small molecule, preventing the model from capturing
comprehensive features. Third, current methods ignore fine-
grained information such as nucleotides of RNA and atoms
of small molecules, restricting them to mine detailed features.
Lastly, the interactions between specific nucleotides of RNA
and atoms of small molecule are essential (Yu et al. 2020),
while existing methods fail to consider such information for
predicting RSMA.

To improve the accuracy of RNA-small molecule affinity
prediction, we propose DeepRSMA, a novel cross-attention-
based deep learning method for accurately predicting the
binding affinity of RNA small-molecule ligands. Firstly, we
design fine-grained feature extraction modules for RNA and
small molecules, considering the nucleotide-level information
for RNA and atom-level information for small molecule.
Meanwhile, these modules process both features from se-
quence and graph perspectives to obtain sequence embedding
and graph embedding, allowing the model to comprehen-
sively mine the information contained in each pair of mole-
cules. In order to empower DeepRSMA to recognize key
regions of RNA-small molecule interactions, we design a
cross-fusion module that can calculate the interaction be-
tween RNA nucleotides and small molecule atoms across se-
quence and graph perspectives, thereby obtaining cross
embeddings. Finally, a prediction module is designed to com-
bine the embeddings from feature extraction and cross-fusion
modules for effective RNA-small molecule binding affinity
prediction. Extensive test results under different settings and
datasets show that DeepRSMA achieves the state-of-the-art
performance. Meanwhile, the interpretability experiment and
case study demonstrate the effectiveness and robustness
of DeepRSMA.

2 Methods
2.1 Overview

As illustrated in Fig. 1, our DeepRSMA comprises four mod-
ules: an RNA feature extraction module, a small molecule
feature extraction module, a cross-fusion module, and an af-
finity prediction module. To leverage the features from differ-
ent modalities, the RNA feature extraction module processes
the RNA sequence into a contact map, nucleotide embedding,
and pretrained embedding by RNA-FM (Chen et al. 2022).
To obtain the RNA graph information, we use a graph atten-
tion network (GAT) (Velickovi¢ et al. 2017) encoder to com-
bine contact map and nucleotide embedding. Meanwhile, the
1D convolutional neural network (CNN) (Krizhevsky et al.
2017) blocks are introduced to mine multiscale sequence in-
formation from nucleotide embedding and pretrained
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embedding. In the small molecule feature extraction module,
we process SMILES into 2D molecular structure and SMILES
token embedding. The graph convolutional network (GCN)
(Kipf and Welling 2017) is used to extract the 2D structure
information from the molecular graph. According to the
transformer encoder, we can generate the small molecule em-
bedding from SMILES sequence. To consider cross-
information and the interaction of RNA and small molecule,
we design a cross-fusion module that integrates RNA and
small molecule information through a cross-fusion based
transformer. Finally, the affinity prediction module predicts
RNA-small molecule binding affinity by fusing the informa-
tion from the RNA and small molecule.

2.2 RNA feature extraction module

2.2.1 RNA graph information

To construct an RNA graph, we first employ SPOT-RNA-2D
(Singh et al. 2022) to obtain distance-based contact maps for
RNAs, which defines two nucleotides as being in contact if
the distance of their nearest-heavy atoms is less than 8 A.
Specifically, we use an embedding layer to project each nucle-
otide into a dense continuous space to represent nodes of
RNA graph. To capture the complex node relationships in
the RNA graph, we then utilize GAT, a multihead attention-
based method for learning node embedding. Taking nucleo-
tide 7 in an RNA as an example, the attention score a,
between i and its neighbor node 7 is calculated as

; exp(LeakyReLU(aT[W 7, W,yr'])) 1)
a. = s
M ey €XP (LeakyReLU(aT[Wyr, W7l 1))

where LeakyReLU is an activate function, 7! is the hidden rep-
resentation of nucleotide 7 in the Ith layer, W, is a trainable
parameter, a is a learnable weight matrix, and N(¢) is the
neighbor nodes of i. After acquiring the attention coefficient,
the representation of nucleotide 7 is calculated by a linear at-
tention aggregation layer:

g -1 J-1 -1 -1
A= ReLU(a W T 4 ST W), ()

1

where W, is a trainable parameter. Assuming an RNA has p
nucleotides, the graph embedding for all the nucleotides is
RS e RP*4 = [r{,73,...,r3]. The RNA graph embedding is
denoted as R¢ € RY = Mean(R®) :% P 7%, where d is the
dimension of hidden size.

2.2.2 RNA sequence information

To capture RNA sequence features at different scales, we em-
ploy 1D CNN with convolution kernels of different sizes. To
better capture RNA semantic information, 1D CNN block
takes two different embeddings as inputs. The first embed-
ding is an initial nucleotide embedding converted from
one-hot encoding by using an embedding layer. Meanwhile,
to incorporate RNA background knowledge into the model,
we leverage the power of RNA-FM, an RNA foundation
model pretrained on 23 million noncoding RNA sequences,
for extracting the second embedding. Then, we average the
nucleotide embedding and the pretrained embedding from
RNA-FM at nucleotide level as the input. We pad the input
with all zero vectors before the convolution operation to pre-
vent the convolution operation from changing the length of
the output embedding. Here, we define the input as I:
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Figure 1. Overview of the DeepRSMA framework. (A, B) Feature extraction modules for RNA and small molecule, separately. (C) Cross-fusion module to
integrate RNA and small molecule information from different views. (D) Affinity prediction module to combine the RNA and small molecule
representations from (A), (B), and (C) and predict RNA-small molecule binding affinity values.

[1,]] — R and the kernel function K : [1,k] — R. The convo-
lution output C(j) between I and K is calculated as follows:

k
= "I(-i+k)-K(), (3)
i=1

where [ is the length of input RNA and k is the kernel size.
Inspired by Wang et al. (2023), we employ three 1D CNN
layers with kernel sizes of 7, 11, and 15 to explore the infor-
mation diversity of RNA nucleotides in different local neigh-
borhoods. After we average the output of three 1D CNN
layers, a projection head is used to linearly transform the av-
eraging embedding E and the final output is calculated
as follows:

R® = ReLU(W?(ReLU(W'E))), (4)
where RS e RPX4 = =7, ,r;,] is the sequence embedding

for RNA nucleotides, W! and W? are trainable parameters.
The RNA sequence embeddmg is denoted
as R® € R? = Mean(R®) = IS

2.3 Small molecule feature extraction module

2.3.1 Small molecule graph information

Extracting features from molecular graphs can effectively
mine the chemical information of small molecules. By using

the open-source software RDKit, we transform the SMILES
of a small molecule into a 2D topology structure, where
atoms serve as nodes and bonds serve as edges. The node fea-
ture is sourced from the atomic feature description matrix of
DeepChem (Ramsundar et al. 2019). Then, we apply GCN to
learn the graph embedding for the small molecule. The calcu-
lation process of Ith GCN layer is as follows:

~ 1. . _1
Mgl = ReLU(D AD ZMgvl-lwﬁ,), (5)

where M8/ is the atomic hidden representation of small mole-
cule in the /th layer, A is the adjacency matrix of small mole-
cule graph with self-connection, D is the degree matrix of
A,andW! is a trainable parameter. Finally, for a small
molecule w1th g atoms, the graph embedding for these g
atoms is M¢ € R1*? = [m‘f,m‘g, .,m5]. The graph embeddmg
for the small molecule is denoted as M eR?

Mean(M¢) = 1 1 mi.

2.3.2 Small molecule sequence information

SMILES is a text language used to describe the chemical
structure of a molecule. To explore the semantic information
contained in SMILES, we employ the Transformer (Vaswani
et al. 2017) encoder to extract pairwise interactions between
atomic tokens. Inspired by Du et al. (2023) and He et al.
(2023), we first use an atomic-level SMILES tokenizer to
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convert SMILES to an input vector. Then, we utilize a
Transformer encoder which consists of L Transformer
blocks. Each Transformer block further consists of two com-
ponents, a multihead attention layer containing parallel self-
attention layers and a feed-forward layer. Taking M® as the
input of a Transformer layer with # heads, the calculation
process of ith head is as follows. Note that we omit the resid-
ual connection and the layer normalization after the multiat-
tention layer and the feed-forward layer.

MsWE (MWK

swV, 6
v >MW, (6)

Head; = Softmax(

where ng , WK, and W) are trainable parameters. Here, the
attention head employs Query (M*W), Key (M*WK), and
Value (M*WY) matrices to perform scaled dot-product atten-
tion, enabling the model to focus on different parts of the in-
put. Then, we concatenate the outputs from # heads and
obtain MultiHead(M?) as the output of the multihead atten-
tion layer. Taking the Ith Transformer block as example, the
feed-forward layer is calculated as

M! = ReLU(MultiHead(M*/=1) - W' + 6 ') Wi' + b/,
(7)

where Ms! 1s the output of the Ith Transformer block and
Wfl and W are trainable parameters, b and b2 are bias,
Lisa scalmg factor. After L Transformer blocks, the ﬁnal
output of the Transformer encoder ML is denoted as
M e RI* = [ms,ms5, ... m;], which represents the learned
sequence embedding for q atoms. The sequence embedding
for the small molecule is denoted
as M® € R? = Mean(M°®) = 1 1 ms.

2.4 Cross-fusion module

Cross-attention mechanism can be employed to fully fuse
RNA and small molecule information. As the Transformer is
the most widely used attention-based architecture, we pro-
pose a novel Transformer-based cross-fusion module to inte-
grate RNA and small molecule information.

The cross-fusion module includes two inputs, [R$,R*] from
RNA in Section 2.2 and [M#&, M] from small molecule in Section
2.3. Each input is composed of the embeddings from both graph
and sequence views. To empower the model with the ability to
recognize sources of inputs, we introduce a graph-view segment
embedding $° and a sequence-view segment embedding S° as
shown in Equation (8). The segment embedding approach ena-
bles the model to discern and assign appropriate weights to the
information derived from both views, thereby achieving more ef-
fective attention learning for following cross-fusion module.

RS s = [RGS s Ri] = [RE + 8¢, RS+ 8°],

M= [MSE MSS ] = [ME+ S8, MS + 57,

mput input> ~input
where Rj,,, and M, are the inputs of cross-fusion
Transformer.

We design two parallel multicross-attention layers to re-
place the traditional multiattention layer in the Transformer
encoder. Specifically, while traditional multiattention layer
can only capture the relationships within the same input, our
multicross-attention layers extend this capability by enabling
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the model to handle inputs from different sources and calcu-
late their relationships. Therefore, the two parallel multicross-
attention layers enable the cross-fusion Transformer to con-
sider the fine-grained interaction between RNA and small
molecule from their respective views. Taking R = [R%§, R%]
and M¢ = [M“¢ M| as the inputs of multicross-attention
layers, the cross-attention in ith head is calculated as follows,
where CrossHead® is for RNA view and CrossHeadM is for
small-molecule view as shown in Fig. 1.

REWR (MWK )T
RJ( R.z) MCWI‘{I-,
\/3 »
MW (REWK )T
M,x( M,l) RCWX“,
\/3 >
9)

CrossHeadf = Softmax(

CrossHeadf\/I = Softmax(

where R‘ng and M‘WM, are Query matrices, R‘W . and
MCWﬂ(/I are Key matrices, and WRt7 WRI, W}‘{,, W,V“7 Wﬁ,,
and WM are trainable parameters. It should be noted that the
two inputs of cross-attention heads are ultimately composed of
fine-grained embeddings, where R° is composed of nucleotide
embeddings from the graph view and sequence view and M° is
composed of atom embeddings from the graph view and sequence
view. Taking the cross-attention of RNA perspective as an exam-
ple, we first calculate the pairwise attention score between each
fine-grained embedding of the RNA query vector RCWR and
small molecule key vector MW .. Ignoring the trainable parame-
ter and Softmax function, the attention score matrix can be repre-
g ML &g MEsS

sented as R¢(M¢)T [icsﬁcg I;CSAA:IICS} R**24 including
intraview pair (the embeddings of nucleotide and atom both come
from graph-view or sequence-view) and cross-view pair (the
embeddings of nucleotide and atom come from graph-view or
sequence-view, respectively). Then, we multiply the cross-attention
RZqu to
achieve atomic information weighting of small molecules on each
nucleotide in RNA, allowing the model to adjust the attention of
nucleotides embedding at different positions and views based on
the information of small molecule.

Finally, similar to Equation (6), we concatenate the outputs
of multiple cross-attention heads for both the RNA and small
molecule perspectives, and obtain the output of a cross-
fusion Transformer through feed-forward layers. After com-
puting through L cross-attention Transformer blocks and the
mean operation, we can generate the output of cross-fusion
module [R€, R%*] € R?*4 and [M €, M| e R?¥4,

score by the small molecule value vector MW, €

2.5 Affinity prediction module

After feature extraction and fusion of the previous three modules,
we obtained four RNA embeddings RE, R°, R%¢, and R“*, and
four small molecule embeddings M, M® M8 and M“*. First,
we obtain RNA embedding R and small molecule embedding M
through mean operation, concatenation operation and a two-
layered MLP separately. The calculation process is as follows:

R = MLP([Mean(R#, R¢), Mean(R*, R**)]), (10)
M = MLP([Mean(M8, M“8), Mean(M*, M**)]),  (11)

where the MLP includes dropout operation and ReLU as acti-
vate function. Finally, we used a two-layered MLP to fuse
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RNA embedding R e€R? and small molecule embed-
ding M € R%:

where y € R is the predicted binding affinity. The model is
trained to minimize the mean squared error between pre-
dicted and actual binding affinities. During the training pro-
cess, the learning rate is Se-4, the batch size is 16, hidden size
dimension d is 128, the dropout rate is 0.2, and the weight
decay is le-7. The model is optimized using the Adam opti-
mizer. All the experiments are conducted on three NVIDIA
RTX4090 GPUs and are repeated three times with differ-
ent seeds.

3 Results
3.1 Datasets and baselines

In order to comprehensively evaluate the model’s ability to
predict RNA-small molecule binding affinity, we evaluated
DeepRSMA on two datasets in this study, including R-SIM
dataset (Krishnan et al. 2023) for cross-validation (CV) and
an independent dataset. First, we processed the R-SIM data-
set and obtained 1439 instances across 341 RNAs and 749
small molecules, including RNA sequences, SMILES strings
of small molecules, and their binding affinity values. We ap-
plied the negative logarithm of the dissociation constant
(pKd) as the metric to measure the binding affinities between
RNAs and small molecules. In addition, we collected the
binding affinity data of 48 compounds for HIV-1 transcrip-
tase response RNA obtained by surface plasmon resonance
from Cai et al. (2022) for an independent test.

We employed the following three different experimental set-
ups: (1) Cross-validation test: We conducted stratified 5-fold
and 10-fold CV, which ensures that each fold maintains the
distribution of target values in the dataset, making each fold
representative of the overall data distribution. (2) Blind test:
To evaluate the model’s performance on unseen data, we
designed three different dataset splits for blind testing, com-
prising blind RNA, blind small molecule, and blind both RNA
and small molecule. Using blind RNA as an example, we di-
vided the RNA-small molecule pairs into five folds based on
RNAs, ensuring that RNAs in each fold did not overlap. Five-
fold CV was used to verify the performance of the model un-
der this setting. (3) Independent test: Due to the limited
amount of data in the independent dataset, we followed the
setting in Krishnan et al. (2024) and only used the 282 viral
RNA data of R-SIM dataset for training, while using the 48
RNA-small molecule pairs related to HIV-1 transcriptase re-
sponse (trans-activation response—T'AR) RNA for testing. To
ensure the independence of the experiments, we further fil-
tered out the RNA and small molecules from the training set
that were similar to those in the independent test set. After re-
moving 2 RNAs and 10 small molecules from the training
data, we obtained an updated training set comprising 141
RNA-small molecule pairs and their affinity scores, while the
test set data remained unchanged. More details of the indepen-
dent test can be found in the Supplementary Material.

To evaluate the performance of DeepRSMA, we adopt
three metrics, namely Pearson’s correlation coefficient (PCC),
Spearman’s correlation coefficient (SCC), and root mean
squared error (RMSE) between predicted and actual binding
affinities. The final results were obtained from the average of

three repeated experimental results with different seeds. We
compared our methods with three categories of methods,
comprising nine baselines. The baselines of machine learning
method includes support vector machine (SVM) (Hearst et al.
1998), k-nearest neighbors (KNN) (Fix and Hodges 1951),
and XGBoost (Chen and Guestrin 2016). The deep learning
baselines involve GCN, GAT, and Transformer. The last cat-
egory of baselines consists of three drug-target binding affin-
ity prediction models, including DeepCDA (Abbasi et al.
2020), DeepDTAF (Wang et al. 2021), and GraphDTA
(Nguyen et al. 2021). More details of the baseline methods
can be found in the Supplementary Material.

3.2 Performance comparison under

multiple settings

3.2.1 Cross-validation results

The performance comparison between DeepRSMA and other
baselines under cross-validation setting is shown in the left
half of Table 1. DeepRSMA demonstrates the state-of-the-art
performance across all the evaluation metrics under five-fold
CV, achieving PCC of 0.784, SCC of 0.786, and RMSE of
0.904. Compared to the second best method in terms of each
metric, the corresponding improvement of PCC, SCC, and
RMSE are 1.6%, 1.7%, and 2.0%, respectively. Our
DeepRSMA achieves the highest PCC and SCC, indicating
that the distribution of the predicted binding affinity values
can fit the distribution of the actual values very well.
Meanwhile, having the lowest RMSE illustrates that
DeepRSMA achieve the most accurate predictions among all
tested methods. In addition, we also conducted a Student’s
t-test for our DeepRSMA and GraphDTA (i.e. the second
best performer under five-fold CV). The P-values for PCC,
SCC, and RMSE are all less than 0.05, indicating that the
performance improvement achieved by DeepRSMA is statisti-
cally significant. Additionally, the results of 10-fold CV can
be found in Supplementary Table S1, which also demon-
strates the leading performance of DeepRSMA.

We also plotted the training and validation loss curves dur-
ing five-fold cross-validation. Figure 2 shows the loss curve
from one of the experiments in the five-fold cross-validation.
The validation loss closely follows the training loss without
significant divergence, suggesting that the model is not over-
fitting to the training data. This consistency between the
curves supports the robustness and generalizability of the
model. The complete results for all the five experiments can
be found in Supplementary Fig. S4.

To provide a more comprehensive evaluation, we trans-
formed the regression task into a classification task using a
threshold value of 4.0 from Yazdani et al. (2023). After con-
ducting a statistical analysis, the new classification dataset
comprises 1181 positive samples and 258 negative samples,
resulting in an imbalanced distribution between the two clas-
ses. We conducted five-fold cross-validation and calculated
three evaluation metrics, i.e. specificity, balanced accuracy
(BACC) score, and the area under the receiver operating char-
acteristic curve (AUC). The results are shown in the right half
of Table 1. In terms of these three metrics, DeepRSMA
achieves improvements over the second best performers by
5.0%, 1.5%, and 0.3%. The results demonstrate that our
model performs well in the classification task. More results
can be found in Supplementary Table S2.
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Table 1. Results under five-fold CV.
Methods Regression task Classification task
PCC? SCCT RMSE| Specificity BACC? AUCT
SVM 0.706 0.714 0.994 0.535 0.756 0.756
KNN 0.671 0.684 1.038 0.578 0.761 0.760
XGBoost 0.755 0.765 0.922 0.597 0.782 0.781
GCN 0.715 0.717 1.046 0.539 0.757 0.879
GAT 0.715 0.716 1.012 0.526 0.748 0.882
Transformer 0.699 0.695 1.067 0.601 0.783 0.901
DeepCDA 0.746 0.743 0.982 0.604 0.790 0.917
DeepDTAF 0.751 0.747 0.957 0.619 0.795 0.914
GraphDTA 0.772 0.773 0.928 0.611 0.787 0.907
DeepRSMA 0.784 0.786 0.904 0.650 0.807 0.920
Note: The best performance for each metric is marked in bold, while the second-best performance is marked in underlined.
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Figure 2. The training and validation curves from one of the experiments in the five-fold CV.
Table 2. Blind test results for various methods.
Methods Blind RNA Blind small molecule
PCC? SCC? RMSE| PCC? SCCT RMSE|
SVM 0.465 0.459 1.233 0.649 0.653 1.069
KNN 0.438 0.433 1.276 0.603 0.609 1.131
XGBoost 0.496 0.463 1.216 0.673 0.680 1.046
GCN 0.429 0.448 1.351 0.642 0.648 1.146
GAT 0.418 0.430 1.357 0.665 0.658 1.092
Transformer 0.563 0.566 1.223 0.575 0.567 1.248
DeepCDA 0.493 0.470 1.263 0.653 0.647 1.136
DeepDTAF 0.560 0.548 1.184 0.651 0.647 1.130
GraphDTA 0.538 0.530 1.289 0.684 0.670 1.118
DeepRSMA 0.582 0.576 1.157 0.702 0.689 1.041

Note: The best performance for each metric is marked in bold, while the second-best performance is marked in underlined.

3.2.2 Blind test results

In order to evaluate the ability of various models to predict
binding affinities for novel RNAs and small molecules, we
implemented three blind settings “Blind RNA”, “Blind small
molecule,” and “All blind” for blind test. The results of
“Blind RNA” and “Blind small molecule” are shown in
Table 2. Since the blind test is more challenging than cross-
validation, the performance of all the tested models decrease.

However, DeepRSMA retains the best performance in all the
metrics of both blind settings, achieving average PCC of
0.642, SCC of 0.633, and RMSE of 1.099. Note that
Transformer and XGBoost also perform well as they can
achieve the second best performance in terms of certain met-
rics as shown in Table 2. Compared with Transformer, our
DeepRSMA can achieve average improvements for PCC,
SCC, and RMSE across two blind settings by 12.8%, 11.6%,
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and 12.5%, respectively. Compared with XGBoost, the aver-
age improvements for PCC, SCC, and RMSE across two
blind settings are 9.7%, 10.7%, and 2.8%. These results
demonstrate DeepRSMA’s robustness when encountering
novel RNAs or small molecules. We attribute the perfor-
mance to the capability of our proposed cross-fusion module
to uncover fine-grained feature interaction between RNAs
and small molecules. More results of “All blind” can be
found in Supplementary Table S3, further demonstrating the
superior performance of DeepRSMA.

3.2.3 Independent test results

The independent test is a crucial step for objectively evaluat-
ing model’s generalization ability. The results of independent
test are shown in Table 3. DeepRSMA achieves PCC of
0.490, SCC of 0.449, and RSME of 0.920, significantly out-
performing all the baselines. In terms of PCC, SCC, and
RMSE, DeepRSMA achieves improvements over the second
best performers by 23.7%, 21.1%, and 5.0%. Due to the in-
ferior generalization capability, the machine learning base-
lines (e.g. SVM, KNN, and XGBoost) perform poorly in the

Table 3. Performance comparison under independent setting.

Methods PCC? SCCT RMSE|
SVM -0.101 -0.090 1.116
KNN 0.097 -0.012 1.144
XGBoost -0.169 -0.209 1.383
GCN 0.297 0.409 1.025
GAT 0.258 0.381 1.017
Transformer 0.396 0.412 0.968
DeepCDA 0.305 0.293 1.025
DeepDTAF 0.077 0.052 1.106
GraphDTA 0.301 0.316 1.012
DeepRSMA 0.490 0.499 0.920

Note: The best performance for each metric is marked in bold, while the
second-best performance is marked in underlined.

independent test. Among the deep learning methods, our
method’s superior performance can be attributed to the fol-
lowing two reasons. First, the RNA and small molecule fea-
ture extraction modules of DeepRSMA can process the
features from sequence and graph perspectives to obtain
more comprehensive range of information. Second, the
cross-fusion module we proposed is capable of effectively in-
tegrating the extracted RNA and small molecule features. To
summarize, the independent test result demonstrates that
DeepRSMA can capture the general patterns from RNAs,
small molecules and their feature interactions, and thus has
better generalization ability.

3.3 Performance comparison on six RNA subtypes

In order to compare with the state-of-the-art method
RSAPred (Krishnan et al. 2024), which constructs models
based on different RNA subtypes, we evaluated DeepRSMA
on the data from six RNA subtypes, including aptamers,
miRNAs, repeats, ribosomal RNAs, riboswitches, and viral
RNAs. The six RNA subtype datasets are obtained from
RSAPred and the performance comparison on stratified 10-
fold CV is shown in Fig. 3. Even without specifically selecting
features for different RNA subtypes, DeepRSMA outper-
formes RSAPred on six RNA subtypes, particularly for
aptamers and viral RNAs (improving PCC by 12.4% and
6.6%, respectively). However, compared to other subtypes,
DeepRSMA does not have a substantial improvement in
repeats and riboswitches as shown in Fig. 3. The reason may
be that the data of miRNAs and riboswitches is limited, with
only 146 and 100 affinity data, respectively. The scarcity of
data affects DeepRSMA’s ability to capture the interaction
patterns between RNAs and small molecules and hinders the
performance improvement. DeepRSMA achieves an average
PCC of 0.871 on the six RNA subtypes, which is 4.1% higher
than that of RSAPed. The scatter plots for both predicted and
actual binding affinities on the six RNA subtypes can be

Performance for six RNA subtypes

RSAPred
90.0 DeepRSMA

Pearson’s correlation coefficient

70.0

Aptamers miRNAs

Repeats

Ribosomal Riboswitches Viral RNAs
RNAs

Figure 3. Performance comparison between DeepRSMA and RSAPred on six RNA subtypes.
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Table 4. Ablation study of DeepRSMA.
Methods Five-fold cross-validation test Independent test

PCC? SCCt RMSE| PCC? SCCt RMSE|
w/o Gra 0.762 0.759 0.955 0.378 0.316 0.981
w/o Seq 0.769 0.770 0.916 0.421 0.403 0.979
w/o Fusion 0.777 0.774 0.916 0.372 0.331 0.979
DeepRSMA 0.784 0.786 0.904 0.490 0.499 0.920
Note: The best performance for each metric is marked in bold.

A B
PDB ID: 1FMN AR | PDB ID: 1UUD e
ae ¢ u’:n“\

_______________
B : Correctly captured (Top 5)

Correctly captured (Top 10)

B : Correctly captured (Top S)

: Correctly captured (Top 10)

Figure 4. Attention visualization for RNA-small molecule binding affinity. (A) PDB ID: 1FMN. (B) PDB ID: 1TUUD. The left part is the solution NMR
structure of the complex. The right part is the 2D pose of ligand and the 3D binding pose of ligand with pocket. In the solution structure and 3D binding
pose, the important RNA nucleotides with high rankings are highlighted. And the important atoms of small molecule with high rankings are labeled in the

2D ligand pose.

found in Supplementary Fig. S6, demonstrating strong per-
formance of DeepRSMA. These results indicate that
DeepRSMA attains the state-of-the-art performance without
relying on selecting specific features based on RNA subtypes,
suggesting its broader applicability.

3.4 Ablation study

To verify the contribution of each component in DeepRSMA,
we devised three variants and evaluated their performance us-
ing five-fold CV. DeepRSMA without graph view (w/o Gra)
removes the component for extracting graph features from
RNAs and small molecules. DeepRSMA without sequence
view (w/o Seq) removes the component for obtaining se-
quence features from RNAs and small molecules.
DeepRSMA  without cross-fusion module (w/o Fusion)
removes the cross-fusion module.

The results under five-fold CV are shown in the left half of
Table 4. The noticeable decrease in performance for
DeepRSMA (w/o Gra) underscores the importance of graph
information, which can model the connections between RNA
nucleotides and topological structures containing small mole-
cule chemical information. And the performance of
DeepRSMA (w/o Seq) illustrates mining the rich biomolecu-
lar pattern information contained in the specific arrangement
of nucleotides and atoms in sequence can help models predict
RNA-small molecule binding affinity more accurately.
Lastly, the inferior performance of DeepRSMA (w/o Fusion)
after removing the cross-fusion module demonstrates that
our proposed cross-fusion module endows DeepRSMA with
the ability to learn RNA and small molecule binding patterns
at fine-grained scales. To further validate the importance of

each component in our model, we conducted an additional
ablation study using the independent test setting, which
presents a more challenging scenario. The results are shown
in the right half of Table 4 and demonstrate that as the diffi-
culty of the task increases, the impact of removing compo-
nents become more pronounced. It confirms that each
component of our model is crucial, particularly under chal-
lenging conditions.

3.5 Interpretability analysis

Due to the utilization of the cross-attention mechanism in
DeepRSMA for predicting the affinity between RNA and
small molecule, the magnitude of attention scores can par-
tially demonstrate whether our method effectively focuses on
the crucial binding sites of RNAs and small molecules.
Specifically, we obtained the attention score matrices of RNA
and small molecule from the cross-fusion Transformer, each
containing attention scores from the graph and sequence per-
spectives. We averaged the scores from different perspectives
to derive the final attention scores for RNA and small mole-
cule and then visualized them structurally. Here, we chose
1UUD and 1FMN from the Protein Data Bank (PDB) data-
base. As shown in Fig. 4, the top 5 nucleotides and atoms of
attention weights are highlighted in dark yellow, while the
top 10 are highlighted in light yellow. The highlighted
nucleotides and atoms are crucial binding sites that have been
experimentally verified.

1FMN shows a complex of flavin mononucleotide (FMN)
bound to a 35-nucleotide RNA aptamer. The isoalloxazine
structure of FMN slots into the helical space between the mis-
matched G9-G27 pair and the G10-U12-A2S5 base triple.
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The edge of the isoalloxazine ring, resembling uracil, pairs
with A26’s Hoogsteen side through a couple of hydrogen
bonds (Fan et al. 1996). DeepRSMA successfully assigns high
attention scores to four binding sites, including G9, G10,
U12, and A26. Specifically, all the nucleotides, except for
G10, are predicted to be within the top 5 positions. It can be
observed that our model has identified most of the nucleoti-
des in the binding pocket. Among the top 10 small molecule
atoms recognized by our model, 8 of them are located within
the isoalloxazine ring.

1UUD is an NMR structure that shows the complex of the
bis-guanidine compound rbt203 and TAR element (RNA)
from HIV-1. In this case, seven RNA binding sites, including
A22,U023, A27, G28, A35, C37, and C39, are correctly cap-
tured. Among them, A22 and U23 are located in the major
groove region of the RNA. The guanidinium groups of the
small molecule may form cation-r stacking interactions with
them, which facilitate the binding of the small molecule to
the RNA (Davis et al. 2004). Our model can successfully
identify the two guanidine groups of rbt203 as key interact-
ing groups. The visualization results demonstrate that
DeepRSMA is capable of capturing the binding sites on
RNAs and the substructures of the small molecules involved
in the interaction and has the potential to provide insights for
RNA-targeted drug discovery.

3.6 Case study on SMIN2 pre-mRNA

To validate DeepRSMA’s ability to predict RNA-small mole-
cule affinity with reasonable accuracy, we applied
DeepRSMA to predict the binding affinity of SMN2 pre-
mRNA and two small molecules with therapeutic potential
for SMA. SMA is a genetic neuromuscular disorder caused by
mutations in the SMN1 gene, leading to the loss of motor
neurons and progressive muscle weakness (Talbot and
Tizzano 2017). The therapeutic approach for SMA involves
targeting the SMIN2 gene’s pre-mRNA splicing process to in-
crease the production of a stable form of the SMN protein.
Risdiplam and branaplam are two of the most promising
drugs for the treatment of SMA. Risdiplam (Ratni et al.
2018) is the first orally available small molecule approved by
the FDA for the treatment of SMA, enhancing the production
of functional SMN protein, and represents a significant ad-
vancement in the treatment of this genetic disorder.
Branaplam (Cheung et al. 2018), developed as an SMN2
splicing modifier, has undergone clinical trials. We note that
these two drugs are not in the R-SIM dataset. Moreover, we
further calculated their Tanimoto coefficients (Du et al.
2023) with the small molecules in the R-SIM dataset. The
highest and average Tanimoto coefficients between risdiplam
and small molecules in R-SIM are 0.266 and 0.091, respec-
tively. These two scores for branaplam are 0.453 and 0.090.
Their low Tanimoto coefficient scores indicate that the two
drugs are not similar to the small molecules in the R-SIM
dataset (Maggiora et al. 2014). More descriptions for these
two drugs can be found in the Supplementary Material. The
binding affinity values predicted by DeepRSMA for risdiplam
and branaplam with SMN2 pre-mRNA are 4.98 and 4.75, re-
spectively, which are very close to the experimentally
obtained values of 4.92 and 4.74 from titration experiments
(Malard ez al. 2024). The results of our case study demon-
strate that DeepRSMA has high predictive ability for RNA-
small molecule binding affinities.

4 Conclusion

In this work, we introduce a novel deep learning method to
predict RNA-small molecule binding affinity, namely
DeepRSMA. DeepRSMA extracts fine-grained information
of RNA and small molecule from sequence view and graph
view. Moreover, a cross-fusion module is designed to learn
fine-grained interactions between different views of RNA and
small molecule. DeepRSMA outperforms all tested baselines
under numerous experimental settings. The results of inter-
pretability experiments illustrate that our cross-fusion mod-
ule can capture key regions of RNA-small molecule binding
which may aid structure-based drug design. These results
show that DeepRSMA has the potential to accelerate the dis-
covery of RNA-targeted drugs.

Supplementary data

Supplementary data are available at Bioinformatics online.
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