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Abstract
Motivation: RNA is implicated in numerous aberrant cellular functions and disease progressions, highlighting the crucial importance of RNA- 
targeted drugs. To accelerate the discovery of such drugs, it is essential to develop an effective computational method for predicting RNA–small 
molecule affinity (RSMA). Recently, deep learning-based computational methods have been promising due to their powerful nonlinear modeling 
ability. However, the leveraging of advanced deep learning methods to mine the diverse information of RNAs, small molecules, and their inter
action still remains a great challenge.
Results: In this study, we present DeepRSMA, an innovative cross-attention-based deep learning method for RSMA prediction. To effectively cap
ture fine-grained features from RNA and small molecules, we developed nucleotide-level and atomic-level feature extraction modules for RNA and 
small molecules, respectively. Additionally, we incorporated both sequence and graph views into these modules to capture features from multiple 
perspectives. Moreover, a transformer-based cross-fusion module is introduced to learn the general patterns of interactions between RNAs and 
small molecules. To achieve effective RSMA prediction, we integrated the RNA and small molecule representations from the feature extraction 
and cross-fusion modules. Our results show that DeepRSMA outperforms baseline methods in multiple test settings. The interpretability analysis 
and the case study on spinal muscular atrophy demonstrate that DeepRSMA has the potential to guide RNA-targeted drug design.
Availability and implementation: The codes and data are publicly available at https://github.com/Hhhzj-7/DeepRSMA.

1 Introduction
RNA is essential to the execution of various biological func
tions such as transcription and translation (Caprara and 
Nilsen 2000). The disruption of structure-related regulatory 
activities in many RNAs can result in various diseases 
(Costales et al. 2020), emphasizing their potential as drug tar
gets. Due to the upstream position of RNA in the translation 
pathway, it is considered a desirable target for disease treat
ment. For example, inhibiting mRNAs with drugs can pre
vent the expression of downstream genes. Specifically, 
risdiplam is the first FDA approved small-molecule drug that 
directly targets human RNA to treat spinal muscular atrophy 
(SMA) (O’Keefe 2020). Risdiplam binds to the precursor 
messenger RNA (pre-mRNA) of the surviving motor neuron 
2 (SMN2), consequently augmenting the synthesis of SMN 
proteins, which are pivotal for motor neuron functionality 
(Ratni et al. 2018). Similar to proteins, when an RNA exhib
its pockets for binding to small molecules, it has the potential 
to act as a drug target (Warner et al. 2018). Therefore, in or
der to accelerate the development of RNA-targeted drugs, it 
is essential to predict the binding affinity between RNAs and 
small molecules (Childs-Disney et al. 2022).

Experimental affinity measurement methods provide valu
able bioactivity data for small-molecule ligands. However, 
such methods face several challenges, including high costs 
and significant time requirements (Kairys et al. 2019). 
Computational methods can complement experimental meth
ods by reducing the number of compounds to be tested. 
Previous computation methods can be divided into two catego
ries. The first strategy is to directly evaluate the affinity between 
RNA and small molecule based on their features through a 
scoring function. For example, Guilbert and James (2008)
docked the ligands by minimizing the root-mean-square- 
deviation-driven energy. Feng and Huang (2020) proposed 
ITScore-NL, which evaluates nucleic acid–ligand interactions 
by stacking interactions and electrostatic potentials. The second 
strategy is to use machine learning algorithms to extract 
features from RNA and small molecule for binding affinity pre
diction. For example, Grimberg et al. (2022) used deep convo
lutional networks, linear regression, and classification trees to 
predict small molecules binding to ribosomal hairpin 91. Szulc 
et al. (2023) developed a software FingeRNAt, which can en
code several noncovalent interactions of RNA and ligand as fin
gerprints and combine with machine learning method to train a 
separate model for each molecular target to predict the RNA– 

Received: 10 June 2024; Revised: 11 October 2024; Editorial Decision: 4 November 2024; Accepted: 12 November 2024 
© The Author(s) 2024. Published by Oxford University Press.   
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

Bioinformatics, 2024, 40(12), btae678 
https://doi.org/10.1093/bioinformatics/btae678 
Advance Access Publication Date: 14 November 2024 
Original Paper 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/40/12/btae678/7900291 by guest on 14 April 2025

https://orcid.org/0009-0000-1949-167X
https://orcid.org/0000-0003-2869-1619
https://orcid.org/0000-0003-0977-3600
https://github.com/Hhhzj-7/DeepRSMA


small molecule interaction. Krishnan et al. (2024) proposed 
RSAPred that categorizes RNA into six subtypes and performs 
feature selection for each subtype. It then trains multiple 
affinity prediction models with distinct features for different 
RNA subtypes.

While previous methods have made significant strides in 
RNA–small molecule affinity prediction, there still exists am
ple room for further development. First, most of these meth
ods focus on predicting the affinity for a specific RNA 
(Grimberg et al. 2022) or a specific RNA subtype (Krishnan 
et al. 2024), but they are not generalized for other RNAs. 
Second, various data modalities can help a model learn fea
tures from different perspectives, while existing methods typi
cally consider either the graph or sequence modality of RNA 
and small molecule, preventing the model from capturing 
comprehensive features. Third, current methods ignore fine- 
grained information such as nucleotides of RNA and atoms 
of small molecules, restricting them to mine detailed features. 
Lastly, the interactions between specific nucleotides of RNA 
and atoms of small molecule are essential (Yu et al. 2020), 
while existing methods fail to consider such information for 
predicting RSMA.

To improve the accuracy of RNA–small molecule affinity 
prediction, we propose DeepRSMA, a novel cross-attention- 
based deep learning method for accurately predicting the 
binding affinity of RNA small-molecule ligands. Firstly, we 
design fine-grained feature extraction modules for RNA and 
small molecules, considering the nucleotide-level information 
for RNA and atom-level information for small molecule. 
Meanwhile, these modules process both features from se
quence and graph perspectives to obtain sequence embedding 
and graph embedding, allowing the model to comprehen
sively mine the information contained in each pair of mole
cules. In order to empower DeepRSMA to recognize key 
regions of RNA–small molecule interactions, we design a 
cross-fusion module that can calculate the interaction be
tween RNA nucleotides and small molecule atoms across se
quence and graph perspectives, thereby obtaining cross 
embeddings. Finally, a prediction module is designed to com
bine the embeddings from feature extraction and cross-fusion 
modules for effective RNA–small molecule binding affinity 
prediction. Extensive test results under different settings and 
datasets show that DeepRSMA achieves the state-of-the-art 
performance. Meanwhile, the interpretability experiment and 
case study demonstrate the effectiveness and robustness 
of DeepRSMA.

2 Methods
2.1 Overview
As illustrated in Fig. 1, our DeepRSMA comprises four mod
ules: an RNA feature extraction module, a small molecule 
feature extraction module, a cross-fusion module, and an af
finity prediction module. To leverage the features from differ
ent modalities, the RNA feature extraction module processes 
the RNA sequence into a contact map, nucleotide embedding, 
and pretrained embedding by RNA-FM (Chen et al. 2022). 
To obtain the RNA graph information, we use a graph atten
tion network (GAT) (Veli�ckovi�c et al. 2017) encoder to com
bine contact map and nucleotide embedding. Meanwhile, the 
1D convolutional neural network (CNN) (Krizhevsky et al. 
2017) blocks are introduced to mine multiscale sequence in
formation from nucleotide embedding and pretrained 

embedding. In the small molecule feature extraction module, 
we process SMILES into 2D molecular structure and SMILES 
token embedding. The graph convolutional network (GCN) 
(Kipf and Welling 2017) is used to extract the 2D structure 
information from the molecular graph. According to the 
transformer encoder, we can generate the small molecule em
bedding from SMILES sequence. To consider cross- 
information and the interaction of RNA and small molecule, 
we design a cross-fusion module that integrates RNA and 
small molecule information through a cross-fusion based 
transformer. Finally, the affinity prediction module predicts 
RNA–small molecule binding affinity by fusing the informa
tion from the RNA and small molecule.

2.2 RNA feature extraction module
2.2.1 RNA graph information
To construct an RNA graph, we first employ SPOT-RNA-2D 
(Singh et al. 2022) to obtain distance-based contact maps for 
RNAs, which defines two nucleotides as being in contact if 
the distance of their nearest-heavy atoms is less than 8 Å. 
Specifically, we use an embedding layer to project each nucle
otide into a dense continuous space to represent nodes of 
RNA graph. To capture the complex node relationships in 
the RNA graph, we then utilize GAT, a multihead attention- 
based method for learning node embedding. Taking nucleo
tide i in an RNA as an example, the attention score αin 
between i and its neighbor node n is calculated as 

αl
in ¼

expðLeakyReLUðaT½Wdrl
i;Wdrl

n�ÞÞP
m2NðiÞ exp ðLeakyReLUðaT½Wdrl

i;Wdrl
m�ÞÞ

; (1) 

where LeakyReLU is an activate function, rl
i is the hidden rep

resentation of nucleotide i in the lth layer, Wd is a trainable 
parameter, a is a learnable weight matrix, and NðiÞ is the 
neighbor nodes of i. After acquiring the attention coefficient, 
the representation of nucleotide i is calculated by a linear at
tention aggregation layer: 

rg;l
i ¼ ReLU

�
αl − 1

ii Warg;l − 1
i þ

X

n2NðiÞ
αl − 1

in Warg;l − 1
n

�
; (2) 

where Wa is a trainable parameter. Assuming an RNA has p 
nucleotides, the graph embedding for all the nucleotides is 
Rg 2 Rp×d ¼ ½rg

1; r
g
2; . . .; rg

p�. The RNA graph embedding is 
denoted as Rg 2 Rd ¼MeanðRgÞ ¼ 1

p

Pp
i¼1 rg

i , where d is the 
dimension of hidden size.

2.2.2 RNA sequence information
To capture RNA sequence features at different scales, we em
ploy 1D CNN with convolution kernels of different sizes. To 
better capture RNA semantic information, 1D CNN block 
takes two different embeddings as inputs. The first embed
ding is an initial nucleotide embedding converted from 
one-hot encoding by using an embedding layer. Meanwhile, 
to incorporate RNA background knowledge into the model, 
we leverage the power of RNA-FM, an RNA foundation 
model pretrained on 23 million noncoding RNA sequences, 
for extracting the second embedding. Then, we average the 
nucleotide embedding and the pretrained embedding from 
RNA-FM at nucleotide level as the input. We pad the input 
with all zero vectors before the convolution operation to pre
vent the convolution operation from changing the length of 
the output embedding. Here, we define the input as I :
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½1; l� ! R and the kernel function K : ½1;k� ! R. The convo
lution output C(j) between I and K is calculated as follows: 

CðjÞ ¼
Xk

i¼1

Iðj − iþkÞ � KðiÞ; (3) 

where l is the length of input RNA and k is the kernel size. 
Inspired by Wang et al. (2023), we employ three 1D CNN 
layers with kernel sizes of 7, 11, and 15 to explore the infor
mation diversity of RNA nucleotides in different local neigh
borhoods. After we average the output of three 1D CNN 
layers, a projection head is used to linearly transform the av
eraging embedding E and the final output is calculated 
as follows: 

Rs ¼ ReLUðW2
c ðReLUðW1

c EÞÞÞ; (4) 

where Rs 2 Rp×d ¼ ½rs
1; r

s
2; . . .; rs

p� is the sequence embedding 
for RNA nucleotides, W1

c and W2
c are trainable parameters. 

The RNA sequence embedding is denoted 
as Rs 2 Rd ¼MeanðRsÞ ¼ 1

p

Pp
i¼1 rs

i .

2.3 Small molecule feature extraction module
2.3.1 Small molecule graph information
Extracting features from molecular graphs can effectively 
mine the chemical information of small molecules. By using 

the open-source software RDKit, we transform the SMILES 
of a small molecule into a 2D topology structure, where 
atoms serve as nodes and bonds serve as edges. The node fea
ture is sourced from the atomic feature description matrix of 
DeepChem (Ramsundar et al. 2019). Then, we apply GCN to 
learn the graph embedding for the small molecule. The calcu
lation process of lth GCN layer is as follows: 

Mg;l ¼ ReLU ~D
− 1

2 ~A ~D
− 1

2Mg;l − 1Wl
e

� �

; (5) 

where Mg;l is the atomic hidden representation of small mole
cule in the lth layer, ~A is the adjacency matrix of small mole
cule graph with self-connection, ~D is the degree matrix of 
~A; andWl

e is a trainable parameter. Finally, for a small 
molecule with q atoms, the graph embedding for these q 
atoms is Mg 2 Rq×d ¼ ½mg

1;m
g
2; . . .;mg

q�. The graph embedding 
for the small molecule is denoted as Mg 2 Rd ¼

MeanðMgÞ ¼ 1
q

Pq
i¼1 mg

i .

2.3.2 Small molecule sequence information
SMILES is a text language used to describe the chemical 
structure of a molecule. To explore the semantic information 
contained in SMILES, we employ the Transformer (Vaswani 
et al. 2017) encoder to extract pairwise interactions between 
atomic tokens. Inspired by Du et al. (2023) and He et al. 
(2023), we first use an atomic-level SMILES tokenizer to 

Figure 1. Overview of the DeepRSMA framework. (A, B) Feature extraction modules for RNA and small molecule, separately. (C) Cross-fusion module to 
integrate RNA and small molecule information from different views. (D) Affinity prediction module to combine the RNA and small molecule 
representations from (A), (B), and (C) and predict RNA–small molecule binding affinity values.
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convert SMILES to an input vector. Then, we utilize a 
Transformer encoder which consists of L Transformer 
blocks. Each Transformer block further consists of two com
ponents, a multihead attention layer containing parallel self- 
attention layers and a feed-forward layer. Taking Ms as the 
input of a Transformer layer with u heads, the calculation 
process of ith head is as follows. Note that we omit the resid
ual connection and the layer normalization after the multiat
tention layer and the feed-forward layer. 

Headi ¼ Softmax
MsWQ

i ðM
sWK

i Þ
T

ffiffiffi
d
p

 !

MsWV
i
; (6) 

where WQ
i ; WK

i , and WV
i are trainable parameters. Here, the 

attention head employs Query (MsWQ
i ), Key (MsWK

i ), and 
Value (MsWV

i ) matrices to perform scaled dot-product atten
tion, enabling the model to focus on different parts of the in
put. Then, we concatenate the outputs from u heads and 
obtain MultiHeadðMsÞ as the output of the multihead atten
tion layer. Taking the lth Transformer block as example, the 
feed-forward layer is calculated as 

Ms;l ¼ ReLU
�

MultiHeadðMs;l − 1Þ �Wf ;l
1 þbf ;l

1

�
Wf ;l

1 þbf ;l
1 ;

(7) 

where Ms;l is the output of the lth Transformer block, and 
Wf ;l

1 and Wf ;l
2 are trainable parameters, bf ;l

1 and bf ;l
2 are bias, 

1ffiffi
d
p is a scaling factor. After L Transformer blocks, the final 
output of the Transformer encoder Ms;L is denoted as 
Ms 2 Rq×d ¼ ½ms

1;m
s
2; . . .;ms

q�, which represents the learned 
sequence embedding for q atoms. The sequence embedding 
for the small molecule is denoted 
as Ms 2 Rd ¼MeanðMsÞ ¼ 1

q

Pq
i¼1 ms

i .

2.4 Cross-fusion module
Cross-attention mechanism can be employed to fully fuse 
RNA and small molecule information. As the Transformer is 
the most widely used attention-based architecture, we pro
pose a novel Transformer-based cross-fusion module to inte
grate RNA and small molecule information.

The cross-fusion module includes two inputs, ½Rg;Rs� from 
RNA in Section 2.2 and ½Mg;Ms� from small molecule in Section 
2.3. Each input is composed of the embeddings from both graph 
and sequence views. To empower the model with the ability to 
recognize sources of inputs, we introduce a graph-view segment 
embedding Sg and a sequence-view segment embedding Ss as 
shown in Equation (8). The segment embedding approach ena
bles the model to discern and assign appropriate weights to the 
information derived from both views, thereby achieving more ef
fective attention learning for following cross-fusion module. 

Rc
input ¼ ½R

c;g
input;R

c;s
input� ¼ ½R

gþ Sg;Rsþ Ss�;

Mc
input ¼ ½M

c;g
input;M

c;s
input� ¼ ½M

gþ Sg;Msþ Ss�;
(8) 

where Rc
input and Mc

input are the inputs of cross-fusion 
Transformer.

We design two parallel multicross-attention layers to re
place the traditional multiattention layer in the Transformer 
encoder. Specifically, while traditional multiattention layer 
can only capture the relationships within the same input, our 
multicross-attention layers extend this capability by enabling 

the model to handle inputs from different sources and calcu
late their relationships. Therefore, the two parallel multicross- 
attention layers enable the cross-fusion Transformer to con
sider the fine-grained interaction between RNA and small 
molecule from their respective views. Taking Rc ¼ ½Rc;g;Rc;s�

and Mc ¼ ½Mc;g;Mc;s� as the inputs of multicross-attention 
layers, the cross-attention in ith head is calculated as follows, 
where CrossHeadR

i is for RNA view and CrossHeadM
i is for 

small-molecule view as shown in Fig. 1. 

CrossHeadR
i ¼ Softmax

RcWQ
R;iðM

cWK
R;iÞ

T

ffiffiffi
d
p

 !

McWV
R;i;

CrossHeadM
i ¼ Softmax

McWQ
M;iðR

cWK
M;iÞ

T

ffiffiffi
d
p

 !

RcWV
M;i;

(9) 

where RcWQ
R;i and McWQ

M;i are Query matrices, RcWK
R;i and 

McWK
M;i are Key matrices, and WQ

R;i; WK
R;i; WV

R;i; WQ
M;i; WK

M;i, 
and WV

M;i are trainable parameters. It should be noted that the 
two inputs of cross-attention heads are ultimately composed of 
fine-grained embeddings, where Rc is composed of nucleotide 
embeddings from the graph view and sequence view and Mc is 
composed of atom embeddings from the graph view and sequence 
view. Taking the cross-attention of RNA perspective as an exam
ple, we first calculate the pairwise attention score between each 
fine-grained embedding of the RNA query vector RcWQ

R;i and 
small molecule key vector McWK

R;i. Ignoring the trainable parame
ter and Softmax function, the attention score matrix can be repre

sented as RcðMcÞ
T
¼ ½

Rc;gMc;g Rc;gMc;s

Rc;sMc;g Rc;sMc;s � 2 R
2p×2q, including 

intraview pair (the embeddings of nucleotide and atom both come 
from graph-view or sequence-view) and cross-view pair (the 
embeddings of nucleotide and atom come from graph-view or 
sequence-view, respectively). Then, we multiply the cross-attention 
score by the small molecule value vector McWV

R;i 2 R
2q×d to 

achieve atomic information weighting of small molecules on each 
nucleotide in RNA, allowing the model to adjust the attention of 
nucleotides embedding at different positions and views based on 
the information of small molecule.

Finally, similar to Equation (6), we concatenate the outputs 
of multiple cross-attention heads for both the RNA and small 
molecule perspectives, and obtain the output of a cross- 
fusion Transformer through feed-forward layers. After com
puting through L cross-attention Transformer blocks and the 
mean operation, we can generate the output of cross-fusion 
module ½Rc;g;Rc;s� 2 R2×d and ½Mc;g;Mc;s� 2 R2×d.

2.5 Affinity prediction module
After feature extraction and fusion of the previous three modules, 
we obtained four RNA embeddings Rg; Rs; Rc;g, and Rc;s, and 
four small molecule embeddings Mg;Ms;Mc;g, and Mc;s. First, 
we obtain RNA embedding R and small molecule embedding M
through mean operation, concatenation operation and a two- 
layered MLP separately. The calculation process is as follows: 

R ¼MLPð½MeanðRg;Rc;gÞ;MeanðRs;Rc;sÞ�Þ; (10) 
M¼MLPð½MeanðMg;Mc;gÞ;MeanðMs;Mc;sÞ�Þ; (11) 

where the MLP includes dropout operation and ReLU as acti
vate function. Finally, we used a two-layered MLP to fuse 
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RNA embedding R 2 Rd and small molecule embed
ding M2 Rd: 

ŷ ¼MLPð½R;M�Þ; (12) 

where ŷ 2 R is the predicted binding affinity. The model is 
trained to minimize the mean squared error between pre
dicted and actual binding affinities. During the training pro
cess, the learning rate is 5e-4, the batch size is 16, hidden size 
dimension d is 128, the dropout rate is 0.2, and the weight 
decay is 1e-7. The model is optimized using the Adam opti
mizer. All the experiments are conducted on three NVIDIA 
RTX4090 GPUs and are repeated three times with differ
ent seeds.

3 Results
3.1 Datasets and baselines
In order to comprehensively evaluate the model’s ability to 
predict RNA–small molecule binding affinity, we evaluated 
DeepRSMA on two datasets in this study, including R-SIM 
dataset (Krishnan et al. 2023) for cross-validation (CV) and 
an independent dataset. First, we processed the R-SIM data
set and obtained 1439 instances across 341 RNAs and 749 
small molecules, including RNA sequences, SMILES strings 
of small molecules, and their binding affinity values. We ap
plied the negative logarithm of the dissociation constant 
(pKd) as the metric to measure the binding affinities between 
RNAs and small molecules. In addition, we collected the 
binding affinity data of 48 compounds for HIV-1 transcrip
tase response RNA obtained by surface plasmon resonance 
from Cai et al. (2022) for an independent test.

We employed the following three different experimental set
ups: (1) Cross-validation test: We conducted stratified 5-fold 
and 10-fold CV, which ensures that each fold maintains the 
distribution of target values in the dataset, making each fold 
representative of the overall data distribution. (2) Blind test: 
To evaluate the model’s performance on unseen data, we 
designed three different dataset splits for blind testing, com
prising blind RNA, blind small molecule, and blind both RNA 
and small molecule. Using blind RNA as an example, we di
vided the RNA–small molecule pairs into five folds based on 
RNAs, ensuring that RNAs in each fold did not overlap. Five- 
fold CV was used to verify the performance of the model un
der this setting. (3) Independent test: Due to the limited 
amount of data in the independent dataset, we followed the 
setting in Krishnan et al. (2024) and only used the 282 viral 
RNA data of R-SIM dataset for training, while using the 48 
RNA–small molecule pairs related to HIV-1 transcriptase re
sponse (trans-activation response—TAR) RNA for testing. To 
ensure the independence of the experiments, we further fil
tered out the RNA and small molecules from the training set 
that were similar to those in the independent test set. After re
moving 2 RNAs and 10 small molecules from the training 
data, we obtained an updated training set comprising 141 
RNA–small molecule pairs and their affinity scores, while the 
test set data remained unchanged. More details of the indepen
dent test can be found in the Supplementary Material.

To evaluate the performance of DeepRSMA, we adopt 
three metrics, namely Pearson’s correlation coefficient (PCC), 
Spearman’s correlation coefficient (SCC), and root mean 
squared error (RMSE) between predicted and actual binding 
affinities. The final results were obtained from the average of 

three repeated experimental results with different seeds. We 
compared our methods with three categories of methods, 
comprising nine baselines. The baselines of machine learning 
method includes support vector machine (SVM) (Hearst et al. 
1998), k-nearest neighbors (KNN) (Fix and Hodges 1951), 
and XGBoost (Chen and Guestrin 2016). The deep learning 
baselines involve GCN, GAT, and Transformer. The last cat
egory of baselines consists of three drug-target binding affin
ity prediction models, including DeepCDA (Abbasi et al. 
2020), DeepDTAF (Wang et al. 2021), and GraphDTA 
(Nguyen et al. 2021). More details of the baseline methods 
can be found in the Supplementary Material.

3.2 Performance comparison under 
multiple settings
3.2.1 Cross-validation results
The performance comparison between DeepRSMA and other 
baselines under cross-validation setting is shown in the left 
half of Table 1. DeepRSMA demonstrates the state-of-the-art 
performance across all the evaluation metrics under five-fold 
CV, achieving PCC of 0.784, SCC of 0.786, and RMSE of 
0.904. Compared to the second best method in terms of each 
metric, the corresponding improvement of PCC, SCC, and 
RMSE are 1.6%, 1.7%, and 2.0%, respectively. Our 
DeepRSMA achieves the highest PCC and SCC, indicating 
that the distribution of the predicted binding affinity values 
can fit the distribution of the actual values very well. 
Meanwhile, having the lowest RMSE illustrates that 
DeepRSMA achieve the most accurate predictions among all 
tested methods. In addition, we also conducted a Student’s 
t-test for our DeepRSMA and GraphDTA (i.e. the second 
best performer under five-fold CV). The P-values for PCC, 
SCC, and RMSE are all less than 0.05, indicating that the 
performance improvement achieved by DeepRSMA is statisti
cally significant. Additionally, the results of 10-fold CV can 
be found in Supplementary Table S1, which also demon
strates the leading performance of DeepRSMA.

We also plotted the training and validation loss curves dur
ing five-fold cross-validation. Figure 2 shows the loss curve 
from one of the experiments in the five-fold cross-validation. 
The validation loss closely follows the training loss without 
significant divergence, suggesting that the model is not over
fitting to the training data. This consistency between the 
curves supports the robustness and generalizability of the 
model. The complete results for all the five experiments can 
be found in Supplementary Fig. S4.

To provide a more comprehensive evaluation, we trans
formed the regression task into a classification task using a 
threshold value of 4.0 from Yazdani et al. (2023). After con
ducting a statistical analysis, the new classification dataset 
comprises 1181 positive samples and 258 negative samples, 
resulting in an imbalanced distribution between the two clas
ses. We conducted five-fold cross-validation and calculated 
three evaluation metrics, i.e. specificity, balanced accuracy 
(BACC) score, and the area under the receiver operating char
acteristic curve (AUC). The results are shown in the right half 
of Table 1. In terms of these three metrics, DeepRSMA 
achieves improvements over the second best performers by 
5.0%, 1.5%, and 0.3%. The results demonstrate that our 
model performs well in the classification task. More results 
can be found in Supplementary Table S2.
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3.2.2 Blind test results
In order to evaluate the ability of various models to predict 
binding affinities for novel RNAs and small molecules, we 
implemented three blind settings “Blind RNA”, “Blind small 
molecule,” and “All blind” for blind test. The results of 
“Blind RNA” and “Blind small molecule” are shown in  
Table 2. Since the blind test is more challenging than cross- 
validation, the performance of all the tested models decrease. 

However, DeepRSMA retains the best performance in all the 
metrics of both blind settings, achieving average PCC of 
0.642, SCC of 0.633, and RMSE of 1.099. Note that 
Transformer and XGBoost also perform well as they can 
achieve the second best performance in terms of certain met
rics as shown in Table 2. Compared with Transformer, our 
DeepRSMA can achieve average improvements for PCC, 
SCC, and RMSE across two blind settings by 12.8%, 11.6%, 

Table 1. Results under five-fold CV.

Methods Regression task Classification task

PCC" SCC" RMSE# Specificity" BACC" AUC"

SVM 0.706 0.714 0.994 0.535 0.756 0.756
KNN 0.671 0.684 1.038 0.578 0.761 0.760
XGBoost 0.755 0.765 0.922 0.597 0.782 0.781
GCN 0.715 0.717 1.046 0.539 0.757 0.879
GAT 0.715 0.716 1.012 0.526 0.748 0.882
Transformer 0.699 0.695 1.067 0.601 0.783 0.901
DeepCDA 0.746 0.743 0.982 0.604 0.790 0.917
DeepDTAF 0.751 0.747 0.957 0.619 0.795 0.914
GraphDTA 0.772 0.773 0.928 0.611 0.787 0.907
DeepRSMA 0.784 0.786 0.904 0.650 0.807 0.920

Note: The best performance for each metric is marked in bold, while the second-best performance is marked in underlined.

Figure 2. The training and validation curves from one of the experiments in the five-fold CV.

Table 2. Blind test results for various methods.

Methods Blind RNA Blind small molecule

PCC" SCC" RMSE# PCC" SCC" RMSE#

SVM 0.465 0.459 1.233 0.649 0.653 1.069
KNN 0.438 0.433 1.276 0.603 0.609 1.131
XGBoost 0.496 0.463 1.216 0.673 0.680 1.046
GCN 0.429 0.448 1.351 0.642 0.648 1.146
GAT 0.418 0.430 1.357 0.665 0.658 1.092
Transformer 0.563 0.566 1.223 0.575 0.567 1.248
DeepCDA 0.493 0.470 1.263 0.653 0.647 1.136
DeepDTAF 0.560 0.548 1.184 0.651 0.647 1.130
GraphDTA 0.538 0.530 1.289 0.684 0.670 1.118
DeepRSMA 0.582 0.576 1.157 0.702 0.689 1.041

Note: The best performance for each metric is marked in bold, while the second-best performance is marked in underlined.
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and 12.5%, respectively. Compared with XGBoost, the aver
age improvements for PCC, SCC, and RMSE across two 
blind settings are 9.7%, 10.7%, and 2.8%. These results 
demonstrate DeepRSMA’s robustness when encountering 
novel RNAs or small molecules. We attribute the perfor
mance to the capability of our proposed cross-fusion module 
to uncover fine-grained feature interaction between RNAs 
and small molecules. More results of “All blind” can be 
found in Supplementary Table S3, further demonstrating the 
superior performance of DeepRSMA.

3.2.3 Independent test results
The independent test is a crucial step for objectively evaluat
ing model’s generalization ability. The results of independent 
test are shown in Table 3. DeepRSMA achieves PCC of 
0.490, SCC of 0.449, and RSME of 0.920, significantly out
performing all the baselines. In terms of PCC, SCC, and 
RMSE, DeepRSMA achieves improvements over the second 
best performers by 23.7%, 21.1%, and 5.0%. Due to the in
ferior generalization capability, the machine learning base
lines (e.g. SVM, KNN, and XGBoost) perform poorly in the 

independent test. Among the deep learning methods, our 
method’s superior performance can be attributed to the fol
lowing two reasons. First, the RNA and small molecule fea
ture extraction modules of DeepRSMA can process the 
features from sequence and graph perspectives to obtain 
more comprehensive range of information. Second, the 
cross-fusion module we proposed is capable of effectively in
tegrating the extracted RNA and small molecule features. To 
summarize, the independent test result demonstrates that 
DeepRSMA can capture the general patterns from RNAs, 
small molecules and their feature interactions, and thus has 
better generalization ability.

3.3 Performance comparison on six RNA subtypes
In order to compare with the state-of-the-art method 
RSAPred (Krishnan et al. 2024), which constructs models 
based on different RNA subtypes, we evaluated DeepRSMA 
on the data from six RNA subtypes, including aptamers, 
miRNAs, repeats, ribosomal RNAs, riboswitches, and viral 
RNAs. The six RNA subtype datasets are obtained from 
RSAPred and the performance comparison on stratified 10- 
fold CV is shown in Fig. 3. Even without specifically selecting 
features for different RNA subtypes, DeepRSMA outper
formes RSAPred on six RNA subtypes, particularly for 
aptamers and viral RNAs (improving PCC by 12.4% and 
6.6%, respectively). However, compared to other subtypes, 
DeepRSMA does not have a substantial improvement in 
repeats and riboswitches as shown in Fig. 3. The reason may 
be that the data of miRNAs and riboswitches is limited, with 
only 146 and 100 affinity data, respectively. The scarcity of 
data affects DeepRSMA’s ability to capture the interaction 
patterns between RNAs and small molecules and hinders the 
performance improvement. DeepRSMA achieves an average 
PCC of 0.871 on the six RNA subtypes, which is 4.1% higher 
than that of RSAPed. The scatter plots for both predicted and 
actual binding affinities on the six RNA subtypes can be 

Table 3. Performance comparison under independent setting.

Methods PCC" SCC" RMSE#

SVM −0.101 −0.090 1.116
KNN 0.097 −0.012 1.144
XGBoost −0.169 −0.209 1.383
GCN 0.297 0.409 1.025
GAT 0.258 0.381 1.017
Transformer 0.396 0.412 0.968
DeepCDA 0.305 0.293 1.025
DeepDTAF 0.077 0.052 1.106
GraphDTA 0.301 0.316 1.012
DeepRSMA 0.490 0.499 0.920

Note: The best performance for each metric is marked in bold, while the 
second-best performance is marked in underlined.

Figure 3. Performance comparison between DeepRSMA and RSAPred on six RNA subtypes.
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found in Supplementary Fig. S6, demonstrating strong per
formance of DeepRSMA. These results indicate that 
DeepRSMA attains the state-of-the-art performance without 
relying on selecting specific features based on RNA subtypes, 
suggesting its broader applicability.

3.4 Ablation study
To verify the contribution of each component in DeepRSMA, 
we devised three variants and evaluated their performance us
ing five-fold CV. DeepRSMA without graph view (w/o Gra) 
removes the component for extracting graph features from 
RNAs and small molecules. DeepRSMA without sequence 
view (w/o Seq) removes the component for obtaining se
quence features from RNAs and small molecules. 
DeepRSMA without cross-fusion module (w/o Fusion) 
removes the cross-fusion module.

The results under five-fold CV are shown in the left half of  
Table 4. The noticeable decrease in performance for 
DeepRSMA (w/o Gra) underscores the importance of graph 
information, which can model the connections between RNA 
nucleotides and topological structures containing small mole
cule chemical information. And the performance of 
DeepRSMA (w/o Seq) illustrates mining the rich biomolecu
lar pattern information contained in the specific arrangement 
of nucleotides and atoms in sequence can help models predict 
RNA–small molecule binding affinity more accurately. 
Lastly, the inferior performance of DeepRSMA (w/o Fusion) 
after removing the cross-fusion module demonstrates that 
our proposed cross-fusion module endows DeepRSMA with 
the ability to learn RNA and small molecule binding patterns 
at fine-grained scales. To further validate the importance of 

each component in our model, we conducted an additional 
ablation study using the independent test setting, which 
presents a more challenging scenario. The results are shown 
in the right half of Table 4 and demonstrate that as the diffi
culty of the task increases, the impact of removing compo
nents become more pronounced. It confirms that each 
component of our model is crucial, particularly under chal
lenging conditions.

3.5 Interpretability analysis
Due to the utilization of the cross-attention mechanism in 
DeepRSMA for predicting the affinity between RNA and 
small molecule, the magnitude of attention scores can par
tially demonstrate whether our method effectively focuses on 
the crucial binding sites of RNAs and small molecules. 
Specifically, we obtained the attention score matrices of RNA 
and small molecule from the cross-fusion Transformer, each 
containing attention scores from the graph and sequence per
spectives. We averaged the scores from different perspectives 
to derive the final attention scores for RNA and small mole
cule and then visualized them structurally. Here, we chose 
1UUD and 1FMN from the Protein Data Bank (PDB) data
base. As shown in Fig. 4, the top 5 nucleotides and atoms of 
attention weights are highlighted in dark yellow, while the 
top 10 are highlighted in light yellow. The highlighted 
nucleotides and atoms are crucial binding sites that have been 
experimentally verified.

1FMN shows a complex of flavin mononucleotide (FMN) 
bound to a 35-nucleotide RNA aptamer. The isoalloxazine 
structure of FMN slots into the helical space between the mis
matched G9–G27 pair and the G10–U12–A25 base triple. 

Table 4. Ablation study of DeepRSMA.

Methods Five-fold cross-validation test Independent test

PCC" SCC" RMSE# PCC" SCC" RMSE#

w/o Gra 0.762 0.759 0.955 0.378 0.316 0.981
w/o Seq 0.769 0.770 0.916 0.421 0.403 0.979
w/o Fusion 0.777 0.774 0.916 0.372 0.331 0.979
DeepRSMA 0.784 0.786 0.904 0.490 0.499 0.920

Note: The best performance for each metric is marked in bold.

Figure 4. Attention visualization for RNA–small molecule binding affinity. (A) PDB ID: 1FMN. (B) PDB ID: 1UUD. The left part is the solution NMR 
structure of the complex. The right part is the 2D pose of ligand and the 3D binding pose of ligand with pocket. In the solution structure and 3D binding 
pose, the important RNA nucleotides with high rankings are highlighted. And the important atoms of small molecule with high rankings are labeled in the 
2D ligand pose.
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The edge of the isoalloxazine ring, resembling uracil, pairs 
with A26’s Hoogsteen side through a couple of hydrogen 
bonds (Fan et al. 1996). DeepRSMA successfully assigns high 
attention scores to four binding sites, including G9, G10, 
U12, and A26. Specifically, all the nucleotides, except for 
G10, are predicted to be within the top 5 positions. It can be 
observed that our model has identified most of the nucleoti
des in the binding pocket. Among the top 10 small molecule 
atoms recognized by our model, 8 of them are located within 
the isoalloxazine ring.

1UUD is an NMR structure that shows the complex of the 
bis-guanidine compound rbt203 and TAR element (RNA) 
from HIV-1. In this case, seven RNA binding sites, including 
A22, U23, A27, G28, A35, C37, and C39, are correctly cap
tured. Among them, A22 and U23 are located in the major 
groove region of the RNA. The guanidinium groups of the 
small molecule may form cation–π stacking interactions with 
them, which facilitate the binding of the small molecule to 
the RNA (Davis et al. 2004). Our model can successfully 
identify the two guanidine groups of rbt203 as key interact
ing groups. The visualization results demonstrate that 
DeepRSMA is capable of capturing the binding sites on 
RNAs and the substructures of the small molecules involved 
in the interaction and has the potential to provide insights for 
RNA-targeted drug discovery.

3.6 Case study on SMN2 pre-mRNA
To validate DeepRSMA’s ability to predict RNA–small mole
cule affinity with reasonable accuracy, we applied 
DeepRSMA to predict the binding affinity of SMN2 pre- 
mRNA and two small molecules with therapeutic potential 
for SMA. SMA is a genetic neuromuscular disorder caused by 
mutations in the SMN1 gene, leading to the loss of motor 
neurons and progressive muscle weakness (Talbot and 
Tizzano 2017). The therapeutic approach for SMA involves 
targeting the SMN2 gene’s pre-mRNA splicing process to in
crease the production of a stable form of the SMN protein. 
Risdiplam and branaplam are two of the most promising 
drugs for the treatment of SMA. Risdiplam (Ratni et al. 
2018) is the first orally available small molecule approved by 
the FDA for the treatment of SMA, enhancing the production 
of functional SMN protein, and represents a significant ad
vancement in the treatment of this genetic disorder. 
Branaplam (Cheung et al. 2018), developed as an SMN2 
splicing modifier, has undergone clinical trials. We note that 
these two drugs are not in the R-SIM dataset. Moreover, we 
further calculated their Tanimoto coefficients (Du et al. 
2023) with the small molecules in the R-SIM dataset. The 
highest and average Tanimoto coefficients between risdiplam 
and small molecules in R-SIM are 0.266 and 0.091, respec
tively. These two scores for branaplam are 0.453 and 0.090. 
Their low Tanimoto coefficient scores indicate that the two 
drugs are not similar to the small molecules in the R-SIM 
dataset (Maggiora et al. 2014). More descriptions for these 
two drugs can be found in the Supplementary Material. The 
binding affinity values predicted by DeepRSMA for risdiplam 
and branaplam with SMN2 pre-mRNA are 4.98 and 4.75, re
spectively, which are very close to the experimentally 
obtained values of 4.92 and 4.74 from titration experiments 
(Malard et al. 2024). The results of our case study demon
strate that DeepRSMA has high predictive ability for RNA– 
small molecule binding affinities.

4 Conclusion
In this work, we introduce a novel deep learning method to 
predict RNA–small molecule binding affinity, namely 
DeepRSMA. DeepRSMA extracts fine-grained information 
of RNA and small molecule from sequence view and graph 
view. Moreover, a cross-fusion module is designed to learn 
fine-grained interactions between different views of RNA and 
small molecule. DeepRSMA outperforms all tested baselines 
under numerous experimental settings. The results of inter
pretability experiments illustrate that our cross-fusion mod
ule can capture key regions of RNA–small molecule binding 
which may aid structure-based drug design. These results 
show that DeepRSMA has the potential to accelerate the dis
covery of RNA-targeted drugs.

Supplementary data
Supplementary data are available at Bioinformatics online.
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