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Abstract—Advanced in the proliferation of the Internet of
Things (IoT), a plethora of functions have been integrated
in vehicular networks and thereby transfered it into a smart
network. However, the contradiction between the limited on-
vehicle computing resource and the massive data collected by
these IoT devices hinders the broader adoption of vehicular
network as a vast variety of on-vehicle applications are latency-
sensitive. To address this issue, vehicular edge computing has
become a promising technology as it can offload a large number
of tasks from its proximal vehicles. However, the offloading
methods recently utilized are inefficient while dealing with multi-
user vehicular networks under dynamic scenarios. To design a
superior offloading method that can effectively and efficiently
offload tasks from vehicles to servers, multiple objectives and
constraints with various topologies should be considered. In this
paper, instead of constructing a typical multi-user and multi-
server vehicular edge computing scenario, a complex scenario
with more uncertainties, i.e. urban scenario, is modeled. We
propose a Hybrid Architecture Matching Algorithm (HAMA)
to minimize the average time latency subject to the constraint on
energy consumption and evaluate the proposed algorithm in the
above two scenarios. Moreover, HAMA is constructed based on
hybrid centralized-distributed architecture, which can process
the centralized collected information on a distributed manner.
Experimental results demonstrate that the matching algorithm
can significantly reduce average time latency, achieving up to a
68% improvement compared to local execution.

Index Terms—Vehicular edge computing, matching algorithm,
resource allocation, optimization algorithm
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ITH the popularization of 5G and the increase of con-
Wnected vehicles in intelligent transportation systems,
intelligent fields such as autonomous driving, facial recogni-
tion, and augmented reality driving have emerged that require
a huge amount of computing resources for applications that
require real-time processing. This poses a huge challenge to
the vehicles with restricted batteries and computing resources.

To deal with this matter, Mobile Cloud Computing (MCC)
was proposed enabling task offloading to remote cloud servers
that are equipped with sufficient computation resources. How-
ever, due to the distant cloud server, MCC does not show
benefit regarding the delay. Mobile edge computing (MEC)
is introduced to solve this problem, where the MEC server
is located at the edge of the wireless access network [1]. By
offloading to the MEC server, fast response is envisioned for
the vehicles. Nevertheless, MEC servers are often subject to
IT resource constraints and communication overhead. Worsely,
the dynamic and uncertain vehicular network poses additional
challenge to the task offloading to MEC servers. Therefore,
for MEC based embedded networks, it is crucial to effectively
allocate communication and computing resources to ensure
quality of service (QoS).

In the on-board edge computing network, one of the most
challenging problems is to obtain the best task offloading
decision when the aim is to minimize the total processing
time of computation-intensive tasks generated by multiple
vehicles. Such an aim becomes much more challenging con-
sidering guaranteeing fairness among the vehicles by con-
ducting joint optimization of intensive computation, delay,
and energy consumption. To meet the above requirements,
effectiveness and adaptability of the strategy need to be taken
into account during the algorithm design and performance
evaluation. Therefore this study devises an efficient offload-
ing approach, introducing the Hybrid Architecture Matching
Algorithm (HAMA), to minimize average time latency while
adhering to energy consumption constraints in a complex
urban vehicular scenario.

The main contributions of this paper are as follows:

e The urban city road model incorporates characteris-
tics specific to urban environments, utilizing Vehicle-to-
Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) topolo-
gies to create a realistic test environment for the vehicular
network model.

o The average time latency for multiple vehicles in a
dynamic vehicular network is minimized, accounting for
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five distinct components of delay computation.

¢ In the proposed HAMA, key parameters for the pref-
erence list are selected based on varying objectives to
maximize individual profits.

o« For HAMA, a centralized coordinator gathers global
information from multi-server and multi-agent vehicular
networks, while the interaction process is designed to
facilitate distributed computation.

The remaining parts are organized as follows. Section II
introduces related works. Section III introduces the system
model and problem formation. Section IV introduces the
proposed algorithm. Section V provides an evaluation of
algorithms in complex scenarios. Finally, Section VI concludes
the paper.

II. RELATED WORK

The existing literature has proposed numerous methods
for analyzing the tasks generated in vehicular networks. To
summarize these efforts, there are two primary areas of ex-
ploration: offloading policies and characteristics of vehicular
networks.

A. Offloading Policies

Distributed methods enable efficient agent interaction with-
out centralized control; recommended for migration decisions,
comparing centralized and distributed architectures based on
power consumption and latency [2]], [3]]. Distributed algorithms
outperform centralized ones; for fairness among users, a low
average delay is achieved through distributed game theory,
balancing users and servers via offloading decisions [4].

B. Vehicular Network Characteristics

1) Mobility: Vehicle edge computing, primarily for real-
time interactive scenarios, often overlooks vehicle dynamic
motion, leading to static offloading decisions [5], [6]. How-
ever, recent research introduces practical approaches consider-
ing time-varying wireless channels and dynamic environments,
employing learning-based algorithms to minimize average
delay [3[], [7].

2) Delay-sensitive and Intensive computation: The vehicle
network processes real-time data collected by high compu-
tational complexity applications. Due to the direct impact
of data processing on subsequent operations, as well as the
development of 5G and the Internet of Things, frequent
information exchange and large amounts of data require lower
response times as computing intensity increases.

III. SYSTEM MODEL
A. Overview

This model incorporates two modes of data transmission
through V2I and V2V topologies in Vehicle-to-everything
(V2X). For each task carrier a random data size is generated
for each interval, and the task carrier determines how to
accomplish the mission based on whether it is offloaded to
the MEC server, server carrier, or local execution.

1) Scenario Assumptions: Fig. 1 illustrates the road sce-
nario with distinct urban city characteristics clearly combined.
In comparison to the highway scenario, which is a unidirec-
tional straight road with multiple traffic streams mentioned in
[3]] and [2f], the urban city road scenario is more practical and
closer to the real world. The urban road model specifically
makes the ensuing postulates:

Firstly, time is equally divided into discrete slots. Vehicle
speeds are randomized independently at the beginning of each
time slot 7, with no correlation among the speeds of vehicles.

Secondly, vehicles in urban areas are distributed according
to a Poisson process, while their speeds follow a Gaussian
distribution, denoted as f(v) ~ N(u,$?). The speed of
vehicles can be zero due to traffic lights, introducing additional
fluctuations and uncertainties.

i .

Fig. 1. The system model in urban city road scenario

Thirdly, there are turning directions (left, right or straight) at
intersections, and the frequency of handover delay caused by
them is higher than that in highway scenarios. Specifically,
vehicles may exit the communication coverage of a server
(server —j) and subsequently enter the coverage of a different
server (server — j'), increasing the frequency of handovers.

Fourthly, higher traffic density reduces the distances be-
tween vehicles, leading to an increase in task generation with
greater computational demands.

Fifthly, urban road transportation requires stringent delay
tolerance constraints due to the need for prompt and responsive
handling of real-time data.

2) Mathematical Representation of the Model: For the
presentation of the dynamic model, we choose to utilize a two-
dimensional Cartesian coordinate system [7]]. And the initial
speed of the i-th vehicle is presumed to be random and the
j-th road side unit (RSU) is located alongside that street at
(a;,0). While the ¢-th vehicle is changing location at (x;, y;),
we can express the time-varying distance from this vehicle to

the RSU as:
di(r) = \[ (i — a;)2 + 42 (1)

For the wireless channel, it is assumed that the transmission
rate is primarily influenced by the time-varying distance d;(7)
between the MEC server connected to the RSU and the vehicle
[7]. And after using Shannon formula, we have transmission
power p, channel bandwidth w, channel power gain G(t),
and noise power o and then we can calculate the uplink
transmission rate as:

G
ri(7) = wlogy (1 + pT(T)) 2)
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While the channel power gain G(t) can be calculated by

Gi(7) = podi(7) ™" = B
(y7 + (aj — xi)?)>
where 6 is the path-loss exponent and pq is the channel power
gain at reference distance d = 1. The vehicles adopt orthog-
onal channels to transmit data, resulting in no interference
among the vehicles.

To simplify the model, we assume that each task vehicle
generates only one task per time slot and this task can be
completed within that single time slot. Moreover, there is no
task can be partially offloaded, indicating that a task vehicle
can select only a MEC server or a server vehicle to accomplish
the task at most. However, handover issues may arise, due to
the fact that vehicles may move within a single time slot [5]].

The city road is equipped with N RSUs, each of which has a
MEC server covering a specific communication range. And the
computation capacities of these MEC servers can be denoted
by {fi,f2,...,fn}. The vehicles’ number is random, of
which n are server vehicles, which are randomly selected with
sufficient computing resources at each time slot, and M are the
task vehicles. And the vehicle servers’ computation capacities
can be denoted by {fn+t1, fN+2,---, [N+n}. It is important
to note that M and » are not the same values in each time slot
during the movement process. V2I or V2V edge computing
services can be provided by MEC servers to vehicles within
the maximum range R to offload task assignments. Therefore,
it has V + n 4+ 1 feasible choices at each time slot for each
of the task vehicles [4]. The task offloading decisions of
taskvehiclei is s; € {0,1,2,... NNN+1,N+2, ..., N+
n}, where s; = 0 signifies that the task vehicle opts to
execute operations locally, s;, = j (1 < j < N) signifies
the task vehicle chooses to offload its task to MEC server of
RSU j, and s; = j (N +1 < j < N + n) signifies the task
vehicle chooses to offload its task to server vehicle j. And the
sections below delve into the computations of various models
and the examination of competitive dynamics.

3) Local Execution: The time for processing will only be
related to CPU cycles intensity to complete per bit tw, the data
size of the task d,;, and computation capability of vehicle CPU
frecal if vehicle chooses to finish a task locally (s; = 0) [4]:

dyp

Local

ti oc (T) = fllfcal' @)
The local execution’ energy consumption el°¢(7) is

known based on [7], and is related to cycles intensity w, data

size dyp and energy consumption of each CPU cycle yLocal,

elLocal(T) _ 61‘Localdupw. (5)

4) Offloading to MEC servers connected to RSUs: If
vehiclet chooses that the task can be offloaded to one of
the MEC servers (s; = j (1 < j < N)), the computation
task’s processing time is composed of four stages [5]] and [3|]:
the data upload transmission delay ¢;(7) from task vehicle
to server, the execution delay tff’jm(T) on the server, the data
download transmission delay t;{‘;w (1) from the MEC server
back to the vehicle, the queuing delay #;:°(7) for waiting other
task execution and the handover delay tif;nd(T). In such case,

the sum of delay tME€(7) of offloading the task to RSU j at

sum
time slot 7 is calculated as:

MEC __4up m dow que hand
toum (T) = 5(7) + 757 (1) + 4057 (7) + 8157 (1) + £57°(7).
(6)
The energy consumption of a task vehicle during this
process t}.FC(7) is proportional to the transmission power

required for uploading and downloading [7]:

e (1) = p. (E5(7) + 557 (7). @)
a) Task upload transmission delay: We can calculate the
first item of (6) as task upload from vehiclei to RSU j via
V2I communications [5]], and the upload transmission delay

up ; .
t; 2 () of uploading the task is:
d
(1) = —=2 8
] (T) 7,;1p(7_) ) ( )

where ¢;%(7) is calculated by uplink transmission rate as (2).
b) Task execution delay: The second delay that offloads
the task MEC server connected to RSU j have a connection

with the computation capability f]MEC and cycles intensity w
(50 .
com upW
657(7) = Ziiee ©)
fi

¢) Handover delay: The handover delay is calculated as
the computation result transmitted from server—j to server—
j’, and then forward to that task vehicle [3]]. Assuming the
amount of computational data is insignificant compared to the
input required for the task, and the handover delay is primarily
caused by backhaul delay:

(10)

thand = (j — j")er,

where c; says the handover delay from server —j to server —
(j + 1), which is often regarded as a constant value.

5) Offloading to the server vehicles: If vehiclet chooses
to offload the task to one of server vehicles (s; =j (N+1 <
j < N + n)), the processing time are similar to the time
offloading to MEC server [3[]. On this condition, the sum of
delay 5% (7) of offloading the task to servervehiclej at

sum
time slot 7 can be calculated as:

toem(T) = 60(7) + 157 (1) + 159 (1) + t15°(7) + 4754 (7).

Y

This process also features similar energy consumption for

the task vehicle ef";V(T) [7] as offloading tasks to the MEC
server:

€55V () = (B50) +4157())

(12)

According to the aforementioned system model, the pro-
cessing time of a vehicle computation task within one time
slot is as follows:

thocal ifs; =0.
ti(s;) = %EC, ifsi=7,1<j<N. (13)
tijv, ifsi=j,N+1<j<N+n.

The above assumptions provide a reasonable approximation
for analyzing task offloading and execution dynamics, and of-
fer insights that are largely applicable to real-world scenarios.
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B. Problem Formulation

By taking into account the computational information of
vehicles, MEC servers, and environmental information, the
objective is to minimize the average delay latency for multiple
vehicles while ensuring satisfaction of the energy consumption
constraint in each time slot. The optimized issue can be
formulated as follows, which is close to [3]:

min

1 M
n 7D tis)
o) e

s.t. energy(7)< B,
energy (7)= e, (7) - Is,—oy + iy (1) - Isi=jy

+e55V (1) - Iisi=jy, Vi€ M.
(14)
The task execution decisions are s;, € S, S £

{s1,52,...,50m}, and I,y is an indicator, I1,y = 1 while * is
true. B denotes energy consumption constraint in the system.

The model is designed to allocate resources among multiple
vehicles and generate optimal offloading decisions at each
time slot within the framework of a realistic vehicular network
environment. By balancing the trade-off between time delay
and energy consumption, this approach maximizes the benefits
not only for consumers but also for network operators.

IV. HYBRID ARCHITECTURE MATCHING ALGORITHM
A. Matching Algorithm design

The matching theory serves as a valuable tool for inves-
tigating the optimization of reciprocal relations, particularly
in the context of task vehicles and MEC servers, which
can be conceptualized as agents generating preference lists
based on collected V21 and V2V information. This theoretical
framework provides a more beneficial and flexible selection
list for both agents.

Cloud Layer ‘
— Centralised Control Layer
Generate Offloading Schedule for all tthe task vehicles

1
preference list preference list
for vehicles for servers
MEC server ‘ ‘ ‘

(((é,)) Server-n

W/C L \J Vehicle-1 Vehicle-2 ... Vehicle-n
Co—0)»
o T\ ]\ /T

V-V information
Fig. 2. Matching algorithm block graph

In our specific scenario, characterized by modest data
volume and the utilization of optical fibers for transmission
within and between servers and the cloud, the efficient and
high-speed nature of optical fiber transmission mitigates the
potential impact of centralization.

The stable marriage matching algorithm, initially designed
for one-to-one matching with an equal number of agents [J5],
forms the basis for modeling the relationship between vehicles

and servers or vehicles in the context of offloading tasks,
achieving a balanced one-on-one matching. Extending beyond
the one-to-one model, MEC servers or vehicles engage in
multitasking facilitated by multitasking vehicles, resulting in
a many-to-one matching scenario [8]]. In this configuration,
each vehicle can select at most one server, while a server
can accommodate multiple tasks (quota () > 1). For simplic-
ity, we assume a lack of dependency relationships, thereby
categorizing the model as typical matching [9]. This implies
that the preference list of vehicles is solely influenced by
the vehicle they aim to match and is not impacted by other
dynamic formations, although the preference list undergoes
changes over time.

Considering the centralized matching algorithm’s system
model block diagram illustrated in Fig. 2 above, this paper
proposes the HAMA. It effectively divides the optimization
problem into two sub-algorithms, enabling each task vehicle
to be matched to a server while ensuring that no vehicle has
motivation to transfer for negotiation. This approach proves
beneficial to all agents involved in the offloading process.

Algorithm 1 The Hybrid Architecture Matching Algorithm
with hybrid centralized—distributed architecture

Require: task vehicles’ parameters; servers’ parameters;
Ensure: task offloading decision S = {s1,s2,...,sm} for task
vehicles;

1: Initialize: offloading decision: execute locally for all task vehi-

cles S ={0,0,...,0}

2: Each vehicle and server generate its preference list based on all
the information from centralised layer and locally collected
while any task vehicle is unmatched do

for each vehicle do

Each vehicle proposes to the most preferred server in its
preference list;

[ NI

6: end for
7. foreach server do
8:  if server;receives only one proposal then
9: Match the vehicle; with server; directly;
10:  else if server; receives more than one proposal
11: Calculate the server; capacity and compare with quota;
12: if current capacity is larger than quota then
13: Rank the vehicle; and compare with existing vehicles
14: if vehicle; has higher rank then
15: Add vehicle; to the server; and remove the lowest rank
vehicle out of the server;
16: else
17: The vehicle; remains unmatched
18: end if
19: else if current capacity is larger than quota then
20: Match the vehicle; with server; directly;
21: end if
22:  end if
23:  end for

24: end while

B. Hybrid centralised-distributed architecture

Two sub-algorithms are presented to address the dynamic
nature of vehicular networks, with updated frequencies em-
ployed at each time slot, facilitating a comprehensive analysis
of the process.

1) Preference list generation: In the first sub-algorithm,
agents update preference lists based on information, aiming
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Fig. 3. Data size (MB) versus Average
time latency (s)

to minimize processing time, energy consumption, and trans-
mission delays while maximizing profitability. This involves
broadcasting vehicle information, calculating transmission de-
lays, and finalizing preference lists for both parties.

2) Matching game with guarantees: In dynamic edge com-
puting networks, a self-learning approach is employed to
achieve lower running time and computational complexity [2]].
Task vehicle location information collected by the cloud layer
is crucial for addressing handover challenges, transmitted to
target servers for matching using Algorithm 1.

Task vehicles update preference lists and propose tasks to
the most selected servers. Rejected tasks are offered to the
next selected server, prioritized based on preferences. The
algorithm terminates when all tasks are matched, minimizing
delay and benefiting agents. In distributed processing, frequent
communication introduces delays, while centralized methods
entail greater transmission delays. Optimizing the hybrid archi-
tecture through matching theory offers high scalability without
centralized coordination.

V. PERFORMANCE EVALUATIONS

To validate the proposed HAMA in urban scenarios, sim-
ulations replicate a system model with a 3 MB input data
size randomly chosen, involving 21 vehicles (two designated
as servers during each time slot) and 30 evenly distributed
RSUs along city roads. CPU cycles for completion are set
at 200 cycles/bit, with RSUs and server vehicle CPU cycle
frequencies at 6.0 GHz, 5.0 GHz, and 0.8 GHz. MEC server
and server vehicle quotas are fixed at 12 MB, and background
noise power is -140 dBm, using a constant 25 MHz wireless
transmission bandwidth. Reference channel power p and Path-
loss exponent 6 are configured as -30 dBm and 3, respectively.

However, addressing the amendment challenging the as-
sumption of no interference among vehicles communicating
with RSUs is crucial. The assertion of no interference faces
practical difficulties due to various factors, including the im-
practicality of allocating independent 25 MHz channels to each
vehicle. The use of a 25 MHz bandwidth in simulations poses
challenges in achieving fixed allocations. Dynamic channel
allocation is considered as a potential solution, introducing
non-trivial challenges related to channel assignment tasks,
involving intricate operations associated with multi-carrier
Orthogonal Frequency Division Multiplexing (OFDM), where
users share subcarriers.

Fig. 4. Server CPU cycle frequency ver-
sus Average time latency

—— Basic Matching Offloading
—— HAMAAIgorithm

Local Execution
= DRL Method
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—— HAMA Algorithm
Local Execution
04 —— DRL Method

Average Time Delay (s)

10.0 125 150 175 200 0 5 10 15 20 25 30 35
CPU frequency (GHz)

number of vehicles

Fig. 5. Running time versus number of
vehicles

In different settings, the proposed HAMA has been com-
pared with existing baseline method, i.e. the one-to-one match-
ing algorithm [[10], a DRL method [9] and local execution. The
one-to-one matching algorithm is basic matching algorithm
which is derived from stable marriage problem.

A. Impact of data size

Fig. 3 shows the variation of average latency with increasing
data size. The latency of three algorithms increases with the
increase of data volume, but HAMA performs better than the
others, reducing the time by more than half. The reason is that
the increase in data size leads to more tasks being offloaded
to MEC servers and vehicles, achieving lower average latency.
The latency of the proposed HAMA rises gradually as the
size of the task data increases, indicating that the matching
algorithm can ensure the correspondence between the task
vehicle and the server.

B. The impact of server CPU cycle frequency

The increase in average time delay is shown in Fig. 4.
Computing power is specified as frequency, and offloading
decisions are closely related to computing power. It is more
likely to offload to servers or carriers to reduce latency. The
average latency of the two algorithms is reduced, and HAMA
is better than the basic algorithm. The rate of time delay
reduction gradually decreases due to the impact of computing
power on task offloading decisions, which will be alleviated
when sufficiently large.

C. Impact of number of vehicles (traffic intensity)

Fig. 5 illustrates an increase in delay correlating with higher
quantities, as more vehicles require offloading and processing
tasks. Limited resources contribute to heightened processing
time, encompassing transmission, computation, and queuing
delays. Notably, the HAMA exhibits a slower delay escalation
compared to the basic algorithm, with an average increase of
only 0.05 seconds. Thus, it is well-suited for scenarios with
heavy vehicle volumes, exceeding 100 vehicles per kilometer
in traffic intensity.

From the above comparisons and analysis, in urban road
scenarios, the proposed HAMA addresses significant process-
ing delays, showcasing its effectiveness in complex networks
and dynamic environments. The theoretical advantages of
HAMA include its ability to handle many-to-one matching ef-
ficiently, reduced computational complexity compared to DRL
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methods, and improved latency over local execution strategies.
HAMA'’s design leverages a hybrid centralized-distributed
approach, which combines the strengths of both centralized
coordination and distributed computation to achieve optimal
task offloading decisions.

VI. CONCLUSION

In this paper, with resource allocation, a task offloading
strategy in vehicular edge computing was proposed and op-
timized. A typical road scene vehicle network model is con-
structed based on contributions from both V2V and V2I topolo-
gies. We present a novel algorithm called HAMA, and empiri-
cally demonstrate its effectiveness through rigorous evaluation
involving key parameters. The performance evaluation is ex-
panded to a more intricate scenario, encompassing a multitude
of urban road characteristics, surpassing the scope of existing
solutions. There are numerous intersections to choose from, a
significant task load to execute, and uncertainty regarding the
traffic light system’s impact. Experimental findings demon-
strate that the proposed algorithm is effectively adaptable. The
matching algorithm performs better than the greedy algorithm
because of the mutually beneficial relationships among agents
with preference lists, achieving a reduction in average time
delay of up to 68% compared to local execution. For future
research, centralized cloud scheduling risks signaling overhead
and delays, prompting the need for decentralized or edge-based
scheduling mechanisms to enhance overall performance. This
raises concerns about the efficiency and responsiveness of the
system, warranting further investigation into decentralized or
edge-based scheduling mechanisms to mitigate the identified
challenges and enhance the overall performance.
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