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Abstract—Speech recognition performance deteriorates in face
of unknown noise. Speech enhancement offers a solution by re-
ducing the noise in speech at runtime. However, it also introduces
artificial distortion to the speech signal. In this paper, we aim
at reducing the artifacts that have adverse effects on speech
recognition. With this motivation, we propose a modification
scheme including a smoothing adaptation to frame signal-to-
noise ratio (SNR) and a reestimation of a priori SNR for
spectral-domain speech enhancement. The experiment shows that
the proposed scheme of enhancement significantly improves the
performance of the state-of-the-art speech recognition over the
baseline speech enhancement techniques.

Index Terms: speech enhancement, speech recognition, a priori
SNR

I. INTRODUCTION

State-of-the-art automatic speech recognition (ASR) system
works well under clean environmental situation. However,
it has been observed that the performance of the speech
recognition system degrades rapidly in the presence of noise
or other distortions [1]. Over the past few decades much
research has been devoted to improving the robustness of
speech recognition in noisy environment [2] [3] [4].

The presence of noise at runtime introduces a mismatch
between the training condition and test condition.

In practice, one of the solutions is the multi-conditional
modeling which trains the acoustic model with various noisy
databases to cover different kinds of noise environment. Multi-
conditional training have proven the great advanced for noisy
situation. It is a straightforward way to achieving noise
robustness, but it is also known to suffer from a lack of
generalisability to unseen conditions and a reduced perfor-
mance of recognition on high-SNR speech. In other words,
such technique fails in face of unknown noise condition. In
particular, the multi-condition cannot improve the recognition
accuracy while the trained model encounters unseen noise.
An alternative to overcome unknown noise condition is to
train the acoustic models on clean speech data and apply
speech enhancement techniques to improve the runtime speech
quality under noise condition [5] [6]. Moreover, the clean
speech model always gives better WER performance to clean
speech recognition than multi-conditional model does. With
the speech enhancement solution, one can focus on developing
a high quality clean acoustic model, a sharper model than a
multi-condition acoustic model.

To understand the artifacts introduced by speech enhance-
ment, and their effects on speech recognition system, we
are interested in looking into various speech enhancement
methods. In practice, it is always difficult to reduce noise

without introducing the speech distortion due to the random
nature of noise and the inherent complexity of speech signal.
It has been a fact that the artifacts will be introduced into
the speech signal as the noise is reduced in the speech signal.
Thus, it is necessary to consider the tradeoff between noise
reduction and speech distortion in speech enhancement [7].

Among the most effective enhancement techniques in the
past decades, the popular ones include spectral-domain de-
noising [8] [9] [10] [11] [12] [13], speech production modeling
[14] [15], human auditory perceptual criterion [16] [17] [18],
the probability of speech presence uncertainty [19] [20],
subspace decomposition [21], and the combinations of the
above techniques [22].

ASR speech enhancement aims to improve the quality of
noisy speech input at runtime to reduce the mismatch with
the trained acoustic model. In 1991, Hanson and Clements
introduced a constrained iterative enhancement for speech
recognition [23], where an iterative Wiener filtering with
vocal tract spectral constraints was formulated using inter-
frame and intraframe constraints based on line spectral pair
transformation. The enhancement approach with interframe
constraints ensures more speech-like formant trajectories than
those found in the unconstrained approach while the intraframe
constraints ensure overall maximization of the speech quality
across all classes of speech. The performance was evaluated
using a standard, isolated-word recognition system. In 2006,
Gemello et al proposed a modification of Ephraim-Malah log-
spectral amplitude method by introducing an overestimation
of noise power and an adjustment of spectral floor into a
priori SNR and a posteriori SNR with respect to frame
SNR [24]. Significant improvement was reported for Aurora
speech recognition system. In 2008, Breithaupt et al proposed
a cepstral-domain smoothing method for estimation of a
priori SNR [25], and the experiment that was done with
Wiener filter shows improvement over conventional decision-
directed approach. However, the effectiveness of the a priori
SNR estimation method was only proven in terms of speech
enhancement objective measurement but not proven in terms
of speech recognition performance. In the same year, Yu et
al applied the Ephraim-Malah minimum mean square error
(MMSE) criterion into speech feature domain [26] instead of
the discrete Fourier transform (DFT) domain for noisy speech
recognition. The performance was investigated on the standard
Aurora speech recognition platform [27]. In 2010, Paliwal
et al investigated the role of speech enhancement in speech
recognition [28] where the experiments were conducted on
the TIMIT speech corpus, however, there was no any solution
provided for the artificial distortion caused by the investigated
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speech estimators against the speech recognition; and also
the speech recognition decoder was only based on small
Gaussian mixture model-hidden Markov model (GMM-HMM)
where only eight-Gaussian mixtures per state were applied
and a bigram language model was used. All the above studies
could not make a very clear impression on the goodness and
effectiveness of the various enhancement methods in modern
speech recognition system, since we observed a fact that the
performance of speech enhancer also depends on the particular
speech recognition models. In other words, the enhancer may
be helpful for certain speech decoder but not always contribute
to another speech decoder. For this reason, it is necessary
to investigate the performance with typical state-of-the-art
decoding platform.

In this paper, we study the spectral-domain speech en-
hancement and select three typical methods, including Wiener
filtering [9], log-spectral amplitude (LSA) [11], and masking-
based β-order (β-masking) MMSE [13] algorithms. In [28],
Paliwal et al investigated sixteen speech enhancement meth-
ods for speech recognition, and gave a conclusion that the
improvements in objective speech quality did not translate to
the improvement of speech recognition; and an enhancer (with
its default settings) that produced best objective speech quality
gave a poor performance in speech recognition. Therefore,
a speech enhancement algorithm may significantly improve
human listening experience [39] [40], direct application of the
enhancement algorithm does not always work well for speech
recognition system. Classical objective quality measure based
on global SNR or average segmental SNR over an utterance
does not, in general, provide useful estimates of the perceived
speech quality as well as the quality of machine recognition.
In our observation, we also noticed that the speech enhancer
that has good PESQ (perceptual evaluation of speech quality)
performance for human listening brings poor word-error-ratio
(WER) performance of speech recognition. The reason is the
improvement of PESQ cannot be directly transferred into the
improvement of feature distortion that directly affects the
performance of speech recognition. So far, there is no any
single statistics of the speech quality measure can completely
transfer the similarity between the estimated speech and the
reference (or clean) speech into the ultimate performance
of machine recognition. However, the distortion measure of
the feature sequence which is directly used as the input of
modern speech recognition system can still represent a rough
estimation of the distinction between the estimated speech
quality and the clean speech quality for the speech recognition.
We propose to improve the ASR speech enhancement systems
by alleviating the feature distortion ratio for the purpose of the
speech recognition in some aspects: the noise overestimation
control, weak spectral component flooring, oversuppression of
unwanted residual noise, and a reestimation of a priori SNR
[41]. Firstly, by introducing smoothing adaptation with respect
to frame SNR, we design a smoothing control of the power of
the processing noise, show a way to process the weak spectral
signal with a time-varying floor of spectral SNRs. Secondly,
we develop an oversuppression of the residual noise with
smoothing adaptation. Finally, we propose a reestimation of
the a priori SNR and extend it to a possible iterative process.
Experimental results show each and every of the modifications

(i.e. the noise control, the weak spectral processing, the
residual noise suppression and a priori SNR reestimation) are
able to effectively improve the performance of the three typical
speech enhancement systems in terms of WER.

In order to build up a meaningful investigation system, we
setup a state-of-the-art evaluation platform which is recon-
structible by open-source speech recognition tool. In particular,
we use Kaldi toolkit [29] to build up a large vocabulary
speech recognition system with a series of the training models
that start from monophone, coarse triphone GMM-HMM to
detailed triphone GMM-HMM, and then DNN-HMM which
follows the pre-training of deep belief network (DBN). In
this speech recognition system, cepstral mean and variance
normalization (CMVN), linear discriminant analysis (LDA),
maximum likelihood linear transform (MLLT), feature space
maximum likelihood linear regression (fMLLR) for speaker
adaptive training and state-level minimum Bayes risk (sMBR)
techniques are applied. We train the models in each steps by
using the labelled clean speech, and measure the performance
of recognition using clean, noisy and enhanced speech.

In the remainder of the paper, we give a brief introduction
of the spectral-domain speech enhancement algorithms used in
this paper in section II. In section III, we propose a series of
modification schemes for the speech estimators against speech
recognition. We describe the speech recognition platform for
the performance evaluation of speech enhancement in section
IV. The evaluation is shown in section V and finally the
conclusion is given in section VI.

II. SPECTRAL-DOMAIN SPEECH ENHANCEMENT
ALGORITHMS

An observed noisy speech signal x(t) is assumed to be a
clean speech signal s(t) degraded by uncorrelated additive
noise n(t), i.e.,

x(t) = s(t) + n(t), 0 ≤ t ≤ T. (1)

Let Sk(l), Nk(l), and Xk(l) denote the kth spectral component
of the clean speech signal s(t), noise n(t), and the observed
noisy speech x(t), respectively, where l denotes the time
frame corresponding to time t in analysis interval [0, T]. The
enhanced speech spectrum is given by Ŝk(l) = Gk(l)Xk(l),
where Gk(l) is the gain function of the enhancement.

A. Wiener Filtering

With Gaussian distribution assumption of the respective
complex spectra of speech and noise, we seek to min-
imize Bayes risk with the expectation of cost function
C(Ŝk(l), Sk(l)) given observed signal Xk [30]

E[C(Ŝk(l), Sk(l))|Xk] ∝
∫
Xk

|Ŝk(l)− Sk(l)|2Yk(l)dSk(l),

Yk(l) = exp
(
− |Xk(l)− Sk(l)|2

ηn(k, l)
− |Sk(l)|2

ηs(k, l)

)
(2)

where ηn(k, l) = E[|Nk(l)|2] and ηs(k, l) = E[|Sk(l)|2] are
the variances of the kth spectral components of noise and the
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speech signal, respectively. Consequently, we have the gain
function for Wiener filter as shown below

Gk(l) =
ξk(l)

1 + ξk(l)
(3)

where ξk(l) is the a priori SNR.

B. LSA-MMSE

Motivated by a fact that the correlation between the spec-
tral components reduces when the analysis interval length
increases, the statistical independence assumption is applied
into the estimation of short term speech spectral amplitude.
As a result, minimizing the mean square error of log spectral
amplitude (LSA) equals |Ŝk(l)| = exp{E[ln |Sk(l)| � Xk]}.
Consequently, Ephraim and Malah derived the gain function
of the LSA-MMSE estimator [11]

Gk(l) =
ξk(l)

1 + ξk(l)
exp

{1

2

∫ ∞

υk(l)

e−t

t
dt
}

(4)

where υk is given by

υk(l) =
ξk(l)

1 + ξk(l)
γk(l). (5)

The definition of the a priori SNR ξk and a posteriori SNR
γk is given as follows

ξk(l) =
ηs(l, k)

ηn(l, k)
, γk(l) =

|Xk(l)|2

ηn(l, k)
. (6)

C. β-masking MMSE

The β-order MMSE speech enhancement method [12] is
derived by minimizing the mean square error cost function
J = E{(|Sk|β − |Ŝk|β)2} based on the complex Gaussian
distribution model and statistical independence assumption.
The gain function of the β-order MMSE expressed by [12]

Gk(l) =

√
υk
γk

[Γ(
β

2
+ 1)M(−β

2
; 1;−υk)]1/β (7)

where Γ(β2 + 1) is the gamma function and M(−β
2 ; 1;−υk)

is the confluent hypergeometric function [10] [12]. Coinciden-
tally, Ephraim-Malah E-M LSA [11] can be seen as a special
case of β-order MMSE when β → 0 [12].

In β-order MMSE, the value of β can be adapted to
proper time-varying properties. In [13], the β-masking MMSE
algorithm adapts the β value as follows

β̂(l, k) = 0.942 + 0.121Ξ(l) + 0.981Θf (l, k)

+ 0.187max[Ξ(l) + 6.7, 0]Θf (l, k).
(8)

where Ξ(l) is frame SNR. Θf is a normalized version of
noise masking threshold at current frame, which represents
the perceptual factor of the human auditory system in the
frequency domain.

D. About Noise Estimation

Before investigating the speech estimators, we need to have
an accurate estimation of the noise spectral variance. Speech
enhancement does actually include two main estimation parts:
the estimation of noise and the estimation of speech. The
quality of estimated speech with the same speech estimator
heavily depends on the accuracy of the estimate of the noise
statistics. In contrast with the speech estimator that is to
reconstruct every instantaneous sample of the speech signal,
the noise estimator is not to restore the instantaneous noise
spectral power, but only to estimate its expectation, i.e., the
noise spectral variance. The main difficulty of noise estimation
is due to the nonstationary characteristics of noise and the
estimation of the background noise during speech activity. In
2001, Martin proposed to estimate the noise spectral statistics
based on tracking the minimum of the noisy speech over a
finite window [45]. This is based on a fact that the noisy
speech spectral power is frequently reduced to the noise
spectral power level during the period of non-speech spectrum
or within brief periods in words and syllables. Obviously,
using minimum values in a window of considerable length
is able to prevent speech spectral power from leaking into
the estimate of noise spectral variance. However, it causes
a problem that it takes slightly more than the duration of
the minimum-search window to update the noise spectrum
when the noise floor increases abruptly. As the minimum is
usually smaller than the mean, unbiased estimates of noise
spectrum were considered with a bias factor based on the
statistics of the minimum estimates. In 2006, Rangachari and
Loizou introduced the speech presence probability (SPP) into
a minimum searching and improved the performance in non-
stationary background noise condition [46]. The introduction
of SPP further reduces the amount of speech spectral power
leaking into the estimates of noise spectral statistics. Recently,
an MMSE-based noise estimation method has been reported
to be effective on tracking the noise spectral power with short
delay [47] [48]. This MMSE-based noise estimation can be
interpreted as a voice activity detection (VAD)-based noise
tracker when the a priori SNR is estimated by means of a
limited maximum likelihood estimate. In [49], an improved
version of the MMSE-based noise estimation is proposed by
introducing SPP with a fixed a priori SNR constraint. The
usage of the fixed a priori SPP leads to an unbiased estimation
of the noise statistics, and it is of even lower computation
complexity than that in [48]. Compared to minimum statistics
noise estimation [45], the MMSE noise estimation improves
the SNR and PESQ for non-stationary noise situation. Through
many experiments, we observed that, for stationary noise, the
minimum statistics [45] and the MMSE-based noise estimation
[48] [46] show quite similar conclusion for the WER com-
parison of different speech enhancement algorithms. For low
SNR situation, the WER performance of minimum statistics
[45] is obviously better than that of MMSE-based [48]. The
WER performance of SPP MMSE-based noise estimation [49]
outperforms both minimum statistics [45] and MMSE-based
noise estimation [48] in most of noise situation, especially for
high SNR situation.

In this paper we only focus on the speech estimation
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study based on a reliable estimate of noise spectral power
density. In the following experiment, we select to report the
performance results based on the SPP MMSE noise estimation
[49] applied on the reference noise in order to obtain a reliable
estimate of noise spectral variance ηn(l, k), so that we can
have a precise comparison for different speech estimators
in terms of speech recognition performance. The idea of
selecting the reference noise instead of noisy speech is to
avoid the interference from the speech signal leakage. With
the progress of the noise estimation techniques which are of
less or more drawbacks currently, the noise spectral variance
estimation will be approaching to its perfection. We believe
that, with the noise estimator applied on the reference noise
in place of the noisy speech, the experimental result for the
performance comparison among different speech estimators is
of meaningful value 1.

III. PROPOSED SCHEMES: ARTIFACT MITIGATION AND
SUPPRESSION CONTROL IN THE SPECTRAL-DOMAIN

ENHANCERS FOR SPEECH RECOGNITION

Usually speech enhancement reduces the noise at the ex-
pense of introducing artifacts in the form of spectral variation
of original speech [7]. The spectral variation includes the
changes of the statistical characteristics of the speech and
the loss of some discriminating information embedded in the
speech signal. The artifacts can cause a new mismatch that
is harmful to recognition. Although a speech enhancement al-
gorithm may significantly improve human listening experience
[39] [40], direct application of the enhancement algorithm does
not always work well for speech recognition.

To speech recognition, the artifacts caused by the enhance-
ment processing is primarily transferred into a certain kind of
distortion in feature vector which is used as input vector of
speech recognition system. Here, we use a cepstral distortion
ratio to represent the feature distortion by the following
formula [2]

ψi =

∑J
l=1[c

(e)
i (l)− c

(c)
i (l)]2∑J

l=1[c
(c)
i (l)]2

, i = 1, ...,M ;

E =
1

M

M∑
i=1

ψi

(9)

where C⃗(l) = [c0(l), c1(l), ..., cM (l)] is the feature coefficient
vector at frame l in speech recognition, J is the number of
feature frames, and c(e)i (l) denotes the i-th feature coefficient
of the l-th corrupted or estimated speech frame, and c

(c)
i (l)

denotes that of the clean speech frame. In this paper, C⃗(l) is
actually the 13-dimension Mel frequency cepstral coefficient
(MFCC) vector with CMVN and VAD processing.

Since the SNRs of spectral component are the most critical
parameters for the spectral-domain speech enhancer [25] [42],
for the purpose of speech recognition, we attempt to improve
the spectral-domain speech enhancement by alleviating the

1Actually, we have also done many sets of experiments using the three
different noise estimation methods including minimum statistics [45], MMSE
noise estimation [48] and SPP MMSE noise estimation [49] applied on either
noisy speech or reference noise, the observations of the WER comparison
between different speech enhancement algorithms are almost consistent.

artifacts in some aspects: a priori SNR and a posteriori SNR
estimation, deep suppression of unwanted residual noise, and
reestimation of a priori SNR.

Considering the definition of a priori SNR by (6), together
with a fact that the maximum likelihood estimate of ξk(l)
equals to γk(l) − 1, by introducing a smoothing factor α
and replacing the current frame speech component with the
estimate in its preceding frame, the conventional decision-
directed estimation of the a priori SNR is given by [10]

ξ̂k(l) =

α
|Gk(l − 1)Xk(l − 1)|2

ηn(k, l)
+ (1− α)max[γk(l)− 1, 0].

(10)

With the decision-directed approach to estimate the a priori
SNR by (10) for subjective listening, the smoothing factor, α,
is conventionally set to 0.98 [10] [12] [13] [38]. It has been
reported that the speech estimators with α set to 0.98 for a
priori SNR estimation results in a great reduction of the noise,
and provides enhanced speech with colorless residual noise,
which is found to be much less annoying and disturbing for
human listening.

However, it has been observed in our experiment that speech
recognition system favors a smaller α value. This could be
due to a fact that the α indicates the memory of past frame
information, a larger value of α means bringing more past
frame information to the current frame. Different from human
hearing system, a HMM-based ASR system is believed to
favor non-overlapping frame information more than its past
information. As a result, a very high value of α brings to the
speech signal much harmful artifacts that the HMM system is
not trained to accommodate.

By investigating the effect of different α value for speech
recognition, we have a conclusion that the best performance
of speech recognition is no long with 0.98 of α and the speech
recognition reaches the best accuracy where α is in range of
0.7 ∼ 0.9.

A. Smoothing Adaptation to Frame SNR for Noise Control and
Weak Spectral Floor

In MMSE estimation, the estimate of speech signal spectral
amplitude Ak is based on modelling speech and noise spec-
tral components as statistically independent Gaussian random
variables [10]. The statistical independence assumption in
the Gaussian model is equivalent to the assumption that
the Fourier expansion coefficients are uncorrelated. Therefore
the k-th spectral gain is only a function of a priori and a
posteriori SNRs of k-th frequency bin rather than those of
other frequency bins. In fact, a good estimate of a spectral
amplitude is not only contributed from the information of
the same frequency parameters but also from other frequency
parameters. Great amount of observations has proven that the
frame SNR is useful information contributed to the estimation
of the speech amplitude [12] [13] [24]. In our previous work
[12] [13] [43], the concept of frame SNR was introduced and
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shown to be useful in spectral estimation. The definition of
frame SNR is given as follows

Ξ(l) = 10 log10

{∑
k |Sk(l)|2∑
k |Nk(l)|2

}
. (11)

Obviously, the introduction of frame SNR breaks the limita-
tion of the statistical independent assumption on the spectral
estimation. In the real-time processing, as we only have
the observed noisy speech signal, and we do not have the
clean speech signal and noise signal, the frame SNR can be
approximated by using the following equation [44]

Ξ(l) =

10 log10 max
{∑

k

{
max[(|Xk(l)| −

√
ηn(l, k) ), 0]

}2∑
k ηn(l, k)

, ε
}

(12)

where ε denotes a small positive number set to 2.22× 10−16.
Conventional relation to the frame SNR is just a very

coarsely concatenation of straight lines [24] [43] [44]. In [12]
[13] [43] [44], the frame SNR is introduced to adapt the value
of β using broken linear relationship. However, the broken
points without smoothing transitions cause harmful error on
the estimation of the weak spectrum contaminated with noise.
In this paper, we introduce a smoothing relationship by using
sigmoid function to solve the broken junction problem.

Controlling the degree of the noise reduction is about
making a trade-off between introducing enhancement artifacts
and reducing noise so that the potential capability of the
speech enhancement can be sufficiently developed for speech
recognition. In this paper, we aim to find a suitable degree
of noise suppression that achieves a proper effect without
introducing much undesired mismatch to feature sequence in
speech recognizer. This consideration motivates us to propose
to control the estimation of the noise spectral variance for
speech estimation.

After the estimation of ηn(k), we limit the processing noise
variance with a control factor ρ(l) so that the processing
noise variance is to be η̆n(k) = ρ(l)ηn(k), which is able
to mitigate the artificial distortion while speech estimator
works on it. Replacing the estimated noise variance with the
processing noise variance by using the control factor ρ(l) is
a way to control the noise overestimation. In [24], Gemello
et al proposed a modified Ephraim-Malah LSA method that
herein is marked GMEM, where the frame SNR (which was
also called global SNR there) is used to control the noise
overestimation and the floor of a priori and a posteriori SNRs
with similar broken segmental linear relationship.

Conventional speech enhancement may adversely affect
speech recognition accuracy when it is applied into the speech
signal that is of very good quality. On the other hand the
suppression of some heavy noise is not sufficient for the speech
recognition purpose. In this paper, we introduce noise control
factor ρ(l) according to the following criteria. Firstly, when the
frame SNR is quite high, the degree of noise suppression needs
to be mitigated in order to lessen the artifacts. Making the very
small value of processing noise retains the sensitivity of the
speech decoder to the artificial distortion. It leads to less noise
reduction to speech utterance of good quality, thus it keeps the

−10 −5 0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

Frame SNR (dB)

N
o
is

e
 C

o
n
tr

o
l 
F

a
c
to

r

s
1
=13.5, s

2
=5, τ

1
=2.6, and τ

2
=0.001.

s
1
=13.5, s

2
=5, τ

1
=1.5, and τ

2
=0.001.

s
1
=13.5, s

2
=5, τ

1
=1.0, and τ

2
=0.001.

s
1
=15.5, s

2
=5, τ

1
=2.6, and τ

2
=0.001.

s
1
=10.5, s

2
=5, τ

1
=2.6, and τ

2
=0.001.

s
1
=13.5, s

2
=3, τ

1
=2.6, and τ

2
=0.001.

s
1
=13.5, s

2
=6, τ

1
=2.6, and τ

2
=0.001.

s
1
=13.5, s

2
=5, τ

1
=2.6, and τ

2
=0.01.

Fig. 1. Noise control factor depending on frame SNR with different constant
sets of τ1, τ2, s1 and s2.
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Fig. 2. Noise control factor and weak spectral floor adapted to frame SNR.

enhancement artifacts to a certain low level. Secondly, when
the frame SNR is low, it is believed that the artifacts can be
further reduced with more noise suppression as compared to
the conventional MMSE enhancer. It means that the processing
noise η̆n(k) is overestimated to be greater than the real noise
level. Thirdly, the value of control factor higher than 1 results
in more suppression of noise for low SNR, however, too high
value of control factor may cause harmful distortion in speech
quality. Fourthly, because the abrupt broken point causes the
damage of speech spectrum, smoothing function is adopted.
Based on the above analysis, we propose to make the noise
control factor ρ(l) to be adapted by frame SNR Ξ(l) as follows

ρ(l) = τ1ϕ
2(Ξ(l), s1, s2) + τ2 (13)

where τ1, τ2, s1 and s2 are constants. and ϕ is a general
sigmoid function as follows

ϕ(x, r1, r2) =
1

1 + exp{(x− r1)/r2}
. (14)

Fig. 1 shows the relationship between the noise control
factor ρ(l) and the frame SNR with different configurations of
constant parameters τ1, τ2, s1 and s2. The constant parameters
are configured at lowest cepstral distortion ratio using a
computer-generated noisy speech database originated from
Switchboard database. As a result, we obtain empirically a
proper constant parameter set of s1=13.5, s2=5, τ1=2.6, and
τ2=0.001. Fig. 2 (a) shows the noise control factor ρ with
respect to the frame SNR (Ξ(l)) for the GMEM noise control
factor and our proposed smoothing noise control factor.
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It is difficult to suppress noise without speech distortion,
especially for weak speech component which is of very low
SNR. In speech recognition, if the loss of weak speech
spectrum can be effectively restricted, the information carried
by the weak spectrum could be safely transferred to the feature
domain and effectively used during matching processing. For
weak spectrum component and silence period, a spectral floor
is introduced into the a priori and a posteriori SNRs in [24]
to avoid negative spectrum values. However, the adaptation
of spectral floor to frame SNR is based on a broken linear
relationship. In this paper, our goal is to design the weak
spectral floor used to modify both the a priori and a posteriori
SNRs with smoothing adaptation to avoid the broken points
that may be harmful to the weak speech signal. Therefore, we
propose the weak spectral floor to be adapted by the frame
SNR as follows

ς(l) = (1 + κ)− ϕ2(Ξ(l), k1, k2) (15)

where κ is the lower bound of the flooring factor. Similarly, the
values of constant parameters (κ, k1 and k2) are selected at the
lowest cepstral distortion ratio using the computer-generated
noisy speech database. Then, empirically the constant param-
eters are set to κ=0.01, k1=13.5, k2=5. Fig. 2 (b) shows the
spectral SNR floor adapted to the frame SNR (Ξ(l)) using
the GMEM spectral floor and our proposed spectral floor
respectively.

With the noise overestimation and weak speech spectral
flooring, the a posteriori SNR is modified as follows

γ̆k(l) =

{
|Xk(l)|2
ρ(l)ηn(l)

, if |Xk(l)|2
ρ(l)ηn(l)

≥ ς(l) + 1;

ς(l) + 1, otherwise
(16)

and the a priori SNR is modified below

ξ̆k(l) =

{
ξ̌k(l), if ξ̌k(l) ≥ ς(l);
ς(l), otherwise

(17)

where ξ̌ is given as follows

ξ̌k(l) = α
|Ğk(l − 1)Xk(l − 1)|2

ρ(l)ηn(k, l)
+ (1− α)(γ̆k(l)− 1) (18)

where Ğk(l − 1) = Gk(ξ̆k(l − 1), γ̆k(l − 1)). It means the
MMSE gain function Ğk(l − 1) is actually the function of
ξ̆k(l − 1) and γ̆k(l − 1) for the previous frame l − 1.

We aim to design a modification scheme to reduce the
feature distortion, so that the speech recognition accuracy
may be improved. Using LSA-MMSE speech estimator, Fig.
3 shows the cepstral distortion ratio of the different pro-
cessing effects including LSA-MMSE with GMEM modifi-
cation (LSA:GMEM) [24], LSA-MMSE with our proposed
smoothing adaptation (LSA:P1) by eqs (13)-(18), and three
baselines (noisy speech utterances without enhancement pro-
cessing (Noisy), LSA-MMSE with cepstral domain a priori
SNR estimation (LSA:CEP) [25], and LSA-MMSE with
conventional decision-directed approach for a priori SNR
estimation [11]). Here, P1 denotes our proposed smoothing
adaptation of the noise control factor and weak spectral floor,
and GMEM denotes conventional broken linear adaptation of
the noise control factor and the weak spectral floor [24]. The
statistics of the cepstral distortion ratio is computed by using
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Fig. 3. Cepstral distortion statistics with 200 utterances.

200 utterances contaminated by 10 dB F16 noise. The 200
utterances are randomly selected from Switchboard database.
We can see the improvement of the feature distortion using
the enhanced utterances, and our proposed smoothing method
is better than the GMEM method 2.

B. Oversuppression of Residual Noise
It has been known that musical noise can very apparently ap-

pear in spectral suppression using spectral subtraction method
[38]. In fact, attenuation of very noisy speech with MMSE
algorithm can also cause the musical noise phenomenon.
Since residual noise spectrum consists of peaks and valleys
with random occurrences, we can seek an oversuppression to
attenuate the spectral excursions beyond the MMSE criterion
for improving speech quality.

An adaptive oversuppression function in respect to frame
SNR can effectively restrict the spectral excursions of noise
peaks to a lower bound so that descend the amount of
the musical noise. Considering potentially adverse effect of
denoising gain applied for high quality speech and insuffi-
cient suppression of heavy noise for the purpose of speech
recognition, we introduce oversuppression according to the
following consideration. When frame SNR Ξ is very high,
the oversuppression is not applied. When the frame SNR
is low, the oversuppression is applied, and subsequently the
oversuppression factor is adjusted to low value depending on
the level of frame SNR. Therefore, we propose to further sup-
press the residual noise by introducing an adaptive smoothing
oversuppression factor as follows

ω(l) = 1 + (ϖ − 1)ϕ2(Ξ(l), w1, w2) (19)

where constant ϖ is the lower bound of the gain control factor,
w1 and w2 are constant. Similarly, we use the computer-
generated speech database to make the configuration of the
constant parameters (κ, k1 and k2), and finally we get lowest
distortion ratio by searching the different constant parameter
sets and obtain the proper configuration as ϖ = 0.1, w1=-3
and w2=2. Subsequently, the gain is modified as follows

¯̆
Gk(l) = ω(l)Ğk(l). (20)

Fig. 4 shows the oversuppression factor ω adapted to frame
SNR. The adaptive oversuppression brings an obvious im-
provement for speech recognition. It is believed that the

2For fair comparison, the parameter settings of GMEM and the proposed
method are exactly the same throughout all experiments in this paper, e.g. the
α of (10) is set to 0.7 for both.
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adaptive oversuppression make the endpoints more correctly
be aligned during speech recognition.

Fig. 5 shows the cepstral distortion ratio of the different
processing effects using LSA speech estimator. P2 denotes
the proposed oversuppression method by eqs (19)-(20). Fig.
5 indicates that, in terms of the cepstral distortion ratio,
the LSA:P1+P2 is better than LSA:P1 in terms of the
cepstral distortion ratio, and LSA:GMEM+P2 is better than
LSA:GMEM. It means that P2 brings improvement on the
cepstral distortion ratio, and P1+P2 is better than GMEM+P2.

C. Re-estimation of a priori SNR

With the optimization for the speech amplitude estimation,
it is believed that the estimation of a priori SNR should be
improved and closer to the true values if we can use the current
frame estimated suppression gain to replace the previous frame
estimated gain in the modified decision-directed equation.
Since the maximum likelihood estimate of E(|Sk(l)|2) is
|Ŝk(l)|2, therefore, we can have the re-estimate of a priori
SNR with the computed gain Ğk(l) that depends on an initial
approximate of the modified a priori SNR ξ̆k(l) using a
modified version of the decision-directed approach (17) as
follows

ξ̃k(l) =

max
[
αc

|Ğk(l)Xk(l)|2

ρ(l)ηn(k, l)
+ (1− αc)(γ̆k(l)− 1), ς(l)

]
.

(21)

Experiment shows that the reestimation improves the feature
distortion for speech recognition, and the best result falls on
αc = 1. Subsequently, the reestimation of the a priori SNR is
only based its definition in (6).
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Fig. 6. The scheme of the proposed estimation of the a priori SNR.

Eventually, the reestimation and gain function form a pair
of iterative algorithm. Theoretically, we can re-estimate the
a priori SNR iteratively to obtain a proper estimated gain.
An investigation shows that increasing iteration may improve
some speech objective measurement like SNR and modified
Bark spectral distortion (MBSD). Let IT denote the number of
iteration with IT=1 denoting one-time usage of reestimation,
we propose a reestimation scheme for the a priori SNR as
follows

ξ̌k(l) = α̌
|ω(l)G̃(IT )

k (l − 1)Xk(l − 1)|2

ρ(l)ηn(k, l)
+ (1− α̌)(γ̆k(l)− 1)

(22)

ξ̃
(0)
k (l) =

{
ξ̌k(l), if ξ̌k(l) ≥ ς(l);
ς(l), otherwise

(23)

G̃
(τ−1)
k (l) = Gk(ξ̃

(τ−1)
k (l), γ̆k(l)), τ = 1, ..., IT. (24)

ξ̃
(τ)
k (l) = max

[ |G̃(τ−1)
k (l)Xk(l)|2

ρ(l)ηn(k, l)
, ς(l)

]
. (25)

As a result, the estimate of speech spectrum is given by

Ŝk(l) = ω(l)G̃
(IT )
k (l)Xk(l). (26)

Here, as mentioned in the beginning of the section, α̌ is also
empirically set to 0.7. Fig. 6 shows the flow chat of the
proposed a priori SNR reestimation scheme.

Let P3 denote the proposed a priori SNR reestimation
method by eqs (22)-(26). Fig. 7 shows the comparison in
terms of the feature statistics of the cepstral distortion ratio
computed by using the 200 utterances. It indicates that the
P1+P2+P3(IT=1) is better than P1+P2, and GMEM+P2+P3
is better than GMEM+P2, and P1+P2+P3(IT=1) is better than
GMEM+P2+P3(IT=1). It means that P3(IT=1) mitigates the
artifacts by improving the cepstral distortion ratio. We also
can see that the statistics distortion with P1+P2+P3(IT=1) and
P1+P2+P3(IT=2) is very closer. P1+P2+P3(IT=3) is not so
good as P1+P2+P3(IT=1).
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Fig. 7. Cepstral distortion statistics with 200 utterances.

IV. SPEECH ENHANCEMENT FOR SPEECH RECOGNITION

A. Acoustic Models for Speech Recognition

Speech recognition is based on statistical models trained
from transcribed speech and pronunciation dictionaries. In the
system, hidden Markov model (HMM) as a temporal topology
linking a sequence of states plays a critical role.

A state-of-the-art speech recognizer is setup by elaborating
the language modeling and acoustic modeling process in the
following.

LM: The language model (LM) is trained with lexicon of
30,858 vocabulary size using SRILM toolkit [31]. We use
Part 1 of Fisher transcripts that are equivalent to 700 hours
of speech for training.

Acoustic Modeling: by using 260k utterances (313 hr 23
min) from Switchboard-1-LDC97S62 database with Kaldi
toolkit [29], we start the acoustic model training from single
Gaussian monophone modeling, coarse triphone modeling, and
detailed triphone GMM-HMM modeling, and then followed by
DNN-HMM modeling etc. The acoustic models with HMM
topology [32] [33] are described as follows.

1) GMM:
GMM-HMM is sophisticated acoustic model where
states are usually delimited as separate GMMs. It is able
to cope with the most important sources of speech am-
biguity and performs to be enough flexible to allow the
realization of recognition systems with large dictionar-
ies. The GMM probability with respect to an observed
speech frame represents the possibility of the speech
frame generating from the corresponding state, while a
transition matrix of the HMM with the probability of
moving from one state to another is used to despatch
the successive process across time sequence.
GMM-HMM model with 11,500 tied-states and 200,000
total Guassian components are trained with LDA, MLLT
and fMLLR-SAT techniques by using 192,000 (286
hours) unique utterances which is aligned by using a
previous trained GMM-HMM acoustic model and the
LM language model [34].

2) DNN:
Considering all of the tied-states covering the entire text-
dependent phoneme in one deep neural network (DNN)
model, DNN is used to generate the posterior proba-
bilities for the HMM states. The parameters of DNN
are trained by optimizing the cross-entropy through

stochastic gradient descent using error backpropagation
procedure [35].
The DNN-HMM model of five hidden layers with 2,048
neurons each hidden layer is trained with cross-entropy
using GPU. The 192,000 fMLLR-transformed utterances
are aligned by using the GMM model and the LM, and
then are split into two parts: 90% of the features used
for DNN training and 10% is used for cross validation
of DNN training.

3) sMBR:
The state-level minimum Bayes risk (sMBR) is to mini-
mize the expected state errors based on the correspond-
ing state labels by utilizing both HMM topology and
language model through the searching lattice [36] [37].
DNN-HMM-sMBR model of five hidden layers with
2048 neurons each hidden layer is trained with sMBR
criterion by using the fMLLR-transformed feature of
192,000 utterances which are aligned by using the DNN
model and the LM model.

B. Speech Recognition Platform for Speech Enhancement
Evaluation

It is well known that when HMM model is trained in quiet
condition and is tested in noisy environment, the recognition
accuracy will drop dramatically. Multi-condition training using
various patterns of noisy databases can increase the accuracy
of noisy recognition accuracy by simulating different kinds of
noise environment. However, in practice, we cannot predict
the condition of training model to match a dissimilar noise
environment. One possible way to solve the problem is to
retrain the HMMs in new noisy condition. However, in most
of realistic applications, this is either inconvenient or impracti-
cable. The HMM model trained with clean speech database is
useful with front-end processing techniques including speech
enhancement and feature enhancement applied in noise.

In this paper, we aim to examine the genuine contribution
of the speech enhancement algorithms to speech recognition
while the state-of-the-art feature enhancement techniques have
been applied in the speech recognition system. In particular,
we used 13 dimensional MFCC feature for speech recognition
system, CMVN, LDA, MLLT and fMLLR feature enhance-
ment techniques. We selected 1,831 English sentences with
21,395 words from the Switchboard corpus, as the test dataset
marked as ‘SWBD’; and we chose 2,628 English sentences
with 21,594 words from the Callhome corpus as test dataset
marked as ‘CALLHM’. We used the speech utterances selected
from the Hub-5-2000 English test corpus which includes about
3.3 hours Switchboard corpus and 20 hours Callhome speech
corpus as test dataset. We add different types of noise with
specified global SNR to generate various kinds of noisy speech
dataset.

As an upper bound reference, Table I shows the WERs
of the clean dataset from the ‘SWBD’ and ‘CALLHM’ with
GMM, DNN and sMBR decoders.

Speech enhancement is applied at the very first stage before
feature extraction. Fig. 8 shows the evaluation platform with
the speech enhancement algorithms for different decoders with
their corresponding acoustic models. In the recognition, the
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TABLE I
Performance of various decoders under clean speech

SWBD Decoder GMM DNN DNN-sMBR
WER (%) 23.3 15.5 14.4

CALLHM Decoder GMM DNN DNN-sMBR
WER (%) 39.3 28.0 26.8

HMM 

Topology  

GMM-HMM

Triphone Model 

Or 

DNN-HMM 

(or DNN-HMM-sMBR) 

Triphone Model  

HCLG  

(WFST) Language Model (LM)

Continuous 

Speech 

Decoder 
Word 

sequence 

Feature 

sequence 

for decoding 

Enhanced speech utterances

Noisy speech utterances 

with different SNR 

Different Speech Enhancement 

Algorithms 

Fig. 8. The evaluation platform for the speech enhancement algorithms in
different decoders.

decoding-graph WFST (weighted finite-state transducer) is
constructed by HCLG = H ◦ C ◦ L ◦ G, where G is an
acceptor that encodes the grammar (or language model), L
represents the lexicon with its output symbols being words
and its input symbols being phones, C represents the context-
dependency, and H contains the HMM configuration with its
output symbols representing context-dependent phones and its
input symbols the transitions-ids. The decoders are formed by
the acoustic models and the decoding graph WFST.

The purpose of choosing the different decoders is to in-
vestigate the effects of the speech enhancement algorithms
in different stages of the speech recognition modeling, to
gain insights into the usefulness of the speech enhancement
algorithms in the machine recognition as opposed to human
subjective listening.

V. PERFORMANCE EVALUATION

We setup the evaluation platform to measure the perfor-
mance of different speech enhancement algorithms for the
state-of-the-art speech recognition system. The three decoders
GMM, DNN and sMBR as introduced in section IV-B are
used in the evaluation.

Different type of noise are added into the test speech
database to generate different group of noisy speech database
with different global SNRs, i.e. 0 dB, 10 dB, 20 dB and 30
dB. And the speech enhancement algorithms are applied into
the noisy speech databases. In this paper, we select three types
of noises, i.e. white noise, F16 noise and Factory1 noise.

A. Investigated Enhancement Algorithms

We choose four existing algorithms as speech denoising
baselines, they are cepstral-domain a priori SNR estimation
[25], modified E-M LSA [24], ETSI noise reduction [53] and

TABLE II
Performance evaluation for the LSA-MMSE in terms of WER with different

noise types in 10 dB using the sMBR decoder for the SWBD databases
Estimation of spectral SNR White F16 Factory1
Noisy (i.e. without denoising) 57.3% 54.1% 53.4%
LSA:GMEM 40.4% 37.4% 39.8%
LSA:P1 37.5% 35.2% 37.6%
LSA:GMEM+P2 38.6% 36.0% 38.4%
LSA:P1+P2 36.3% 34.6% 36.3%
LSA:GMEM+P2+P3(IT=1) 34.8% 33.5% 36.1%
LSA:P1+P2+P3(IT=1) 33.9% 32.1% 35.2%
LSA:P1+P2+P3(IT=2) 33.8% 32.2% 35.5%
LSA:P1+P2+P3(IT=3) 34.1% 32.5% 35.7%

autoencoder denoising [51] [52]. Their details are described
as follows:

CEP: In [25], Breithaupt et al introduced an estimation of
a priori SNR in cepstral-domain where the pitch can easier
detected and special considered with a selective smoothing
scheme.

GMEM: In [24], Gemello et at propose to modify E-M LSA
by estimating the a priori and the a posteriori SNRs with the
noise overestimation factor and the SNR spectral floor.

ETSI: The standard ETSI noise reduction is based on two
stages of applying Mel-warped Wiener filtering. Each stage
has linear Wiener filter coefficients smoothed by using Mel
filter-Bank, and the impulse response of this Mel-warped
Wiener filter obtained by applying a Mel-warped inverse
discrete cosine transform (iDCT) [53].

Autoencoder: Autoencoder denoising can be used for noisy
speech recognition, its neural network parameters is trained
in fMLLR transformed feature domain by using a pair of
speech, whose noisy speech is used as input and the clean
speech as target output [52]. Noise sources from NOISEX-92
database [50] are selected to add into a clean speech database
with different global SNR. In particular, we split 286 hours of
speech database from Switchboard into 35 groups; then add 7
types of noises with 5 different SNR (i.e., 0dB, 10dB, 20dB,
30dB and 40dB) separately to form 35 different speech groups.
Out of the three selected noises in this paper, only Factory1
noise is involved for autoencoder DNN training, but white and
F16 noises are excluded. 3

To study the contributions of P1, P2 and P3, Table II shows
comparison between the two adaptation methods in terms of
the WER performance of the sMBR decoder with different
types of noise in 10 dB. It is obvious that the performance of
LSA with P1 is consistently better than the one with GMEM.

It can be seen that the proposed reestimation scheme ob-
viously outperforms over the conventional decision-directed
approach for speech recognition. However, the WER per-
formance of the reestimation with IT=1 and IT=2 is very
similar, but the one of IT=3 is apparently worse than that
of IT=1. The observation of WER performance is consis-
tent with the cepstral distortion ratio in section III-C where
statistic cepstral distortion ratios with P1+P2+P3(IT=1) and
P1+P2+P3(IT=2) are very closer, while the cepstral distortion
ratio with P1+P2+P3(IT=3) is not so good as that with
P1+P2+P3(IT=1), although our observation with the listening-
purpose measurement in terms of SNR and PESQ (perceptual

3The purpose of including versus excluding noise is to observe the different
effect between including and excluding noises.
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evaluation of speech quality) shows the P1+P2+P3(IT=3) is
better than P1+P2+P3(IT=2). According to the above obser-
vation, we adopt only one-time reestimation (i.e. IT=1) in the
next experiment.

In the experiment, the performance of the three typical
speech enhancement algorithms, i.e. Wiener filter, LSA and
β-masking, are investigated with conventional spectral SNR
estimation and the proposed estimation. In the following
experiment, we are showing the performance of our proposed
scheme, PRO, which combine the three proposed P1+P2+P3
methods. Following is a list of the baselines and the investi-
gated algorithms.

———————————————————————-
• Noisy: Noisy speech baseline without denoising;
• Wiener: Conventional Wiener filter [9];
• LSA: Conventional LSA filter [11];
• mβ: Conventional β-masking MMSE [13];
• LSA:GMEM: Gemello’s modified E-M LSA [24] baseline;
• ETSI: ETSI baseline [53];
• Autoencoder: Autoencoder denoising baseline [52];
• Wiener:CEP: Wiener with cepstral a priori SNR [25] baseline;
• LSA:CEP: LSA with cepstral a priori SNR [25] baseline;
• Wiener:PRO: Wiener with the proposed P1+P2+P3(IT=1);
• LSA:PRO: LSA with P1+P2+P3(IT=1);
• mβ:PRO: β-masking with P1+P2+P3(IT=1).
———————————————————————-

B. WER performance of different enhancement algorithms
Now we are showing the enhancement performance for

speech recognition. The platform system was built using Kaldi
toolkit [29], which is the state-of-the-art open source speech
recognition software. The performance of various speech en-
hancement algorithms is measured in terms of WER with
different speech recognition decoders. The experimental result
is reported in Figs 9-14 4 for white, F16 and Factory1 noises
respectively, where the Switchboard data ‘SWBD’ represents
the same recording channel as training database, and Callhome
data ‘CALLHM’ represents the different recording channel
from that of the training database.

From the experimental results, we observed that the speech
enhancement may perform different effects on different de-
coders. This phenomenon is obvious when comparing GMM
and DNN. In high SNR, a speech enhancement can be helpful
in some modeling case but possibly bring worse effect in
another modeling situation. The instability is due to the
unreliable artifacts introduced by the enhancer in different
characteristics. Therefore, revealing the enhancement problem
hidden inside the enhancement algorithm is meaningful.

In the figures, we highlight the best WER value with bold-
font style for easy reference. From the figures, it can be seen
that almost all of the speech enhancement algorithms gives
positive effect to speech recognition, except a few of them
brings negative effect for the case of high SNR (e.g. 30 dB).

Conventional LSA helps on GMM decoder but does not
help on DNN and sMBR decoders for the case of 30 dB white
noise.

It is obvious that the improvement is great with our
proposal scheme. For all selected enhancement algorithms,

4Notice: ** denotes that no test is done, * indicates that the decoder cannot
work properly due to strong noise condition.

i.e. Wiener filter, LSA and β-masking MMSE, the progress
is consistent. In particular, Wiener:PRO is generally better
than Wiener:CEP for all decoders with some exceptions,
especially for low SNR situation. We also can see that
LSA:PRO is almost consistently better than LSA:CEP as
well as LSA:GMEM. The reason is that PRO synthesizes the
advantage of the smoothing effect, more accurate estimation of
a priori and a posteriori SNRs, and the appropriate smoothing
oversuppression of noise in low frame SNR situation.

LSA is consistently better than Wiener filter in the baseline
version and in the proposed version. In general, mβ is better
than LSA for most of cases both in the baseline version
and in the proposed version. It examines that the masking
information can bring positive contribution to the speech
recognition system.

We can see the mβ:PRO gives great improvement in low
SNR case for all the three speech recognition decoders, and
totally helpful in high SNR case.

It is noticed that autoencoder performance good only for
low SNR case with known noise situation (i.e. Factory1 noise),
but its performance drops down rapidly when it is applied for
high SNR case. Generally, its performance is not consistently
positive. Our proposed methods generally outperform it. Al-
though we believed that if we re-organize the training database
for autoencoder DNN, the performance may improve, but the
limitation of the method is still obvious as compared to the
potential of spectral-domain enhancement algorithm.

We notice that the ETSI is a powerful noise reduction
system, especially in the low SNR situation in ‘SWBD’
testbed, it significantly reduce the WER to an amazing level.
This advantage is very apparent for F16 noise, WER from
85.7% drops to 58.9%, reaches 31.27% improvement for 0 dB
with sMBR decoder, although mβ:PRO makes a significant
improvement and let WER dropped to 62.3%, with 27.3%
improvement. However, ETSI does not perform so good in
‘CALLHM’ testbed.

However, mβ:PRO captures up and outperforms ETSI in
White and Factory1 noises with low SNR. And it wins most
of best accuracy totally. For the case of 10 dB Factory1
noise, it drops WER from 53.4% to 35.0% to gain 34.46%
improvement with sMBR decoder.

The experiments described in the figures made evident that
our proposed scheme brings positive and effective progress for
the ASR denoising.

VI. CONCLUSIONS

We established a state-of-the-art speech recognition plat-
form for speech enhancement evaluation, and investigated
typical spectral-domain enhancement algorithms for different
speech recognition decoders under various noise conditions.
Against the weakness of the conventional speech enhancement
algorithm, this paper aims to reveal the potential of the
speech enhancement for the purpose of speech recognition.
We therefore proposed a series of modification on spectral
SNR and the suppression gain to mitigate the feature distortion
for speech recognition including smoothing-adaptation scheme
for controlling the processing noise power and mitigating the
harmful artifacts for weak speech signal, oversuppression of
the unwanted residual noise component, and the reestimation
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Fig. 10. Speech Enhancement Performance with CALLHM Dataset Under
White Noise Condition in terms of WER (%)

of a priori SNR. With the experimental result, we have the
following conclusions: the introduction of frame SNR and the
smoothing adaptation methods are effective; an enhancer may
be helpful for certain speech decoder but not always contribute
to other speech decoder; the proposed scheme is significantly
effective for all the three typical speech enhancement algo-
rithms for speech recognition; LSA is evidenced to be almost
consistently better than Wiener filter in terms of WER; the
general performance of β-masking MMSE is better than the
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Fig. 11. Speech Enhancement Performance with SWBD Dataset Under F16
Noise Condition in terms of WER (%)
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Fig. 12. Speech Enhancement Performance with CALLHM Dataset Under
F16 Noise Condition in terms of WER (%)
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Fig. 13. Speech Enhancement Performance with SWBD Dataset Under
Factory1 Noise Condition in terms of WER (%)

other two, i.e. Wiener filter and LSA.
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