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Abstract— Automatic tracking of intra-beat cardiac activities
in ballistocardiogram (BCG) is a highly interesting yet tech-
nically challenging topic for cardiac monitoring, due to the
signal’s high susceptibility to various forms of distortions. In
this paper, we aim to further investigate the BCG waveform
detection from a signal processing and analysis viewpoint.
We collect synchronized electrocardiography(ECG) and BCG
recordings from four healthy human subjects using an in-house
built multi-physiological monitoring device. Particularly, we
study post-exercise ECG-BCG signals that embed considerable
variation in the heart beat during the post-exercise recovery
phase. Furthermore, we develop an efficient and interactive
tool for detecting and marking ECG-BCG waveforms in each
heart beat. Through analyzing the detected time interval signals,
we explore new interesting patterns of dynamic associations
between different time interval signals. At the same time, we call
for development of improved detection algorithms to address
robustness and accuracy issues.

I. INTRODUCTION

Recent years have seen an active research field of un-
obtrusive cardiovascular monitoring especially using new
generation of ballistocardiogram (BCG) sensors [1]. BCG
essentially detects the minuscule motion of the human body
in response to the recoil forces of the cardiac ejection into
the vascular system. Therefore, it carries critical information
of mechanical signatures of cardiovascular activities, and
can also be accessed unobtrusively, making it an important
option for clinical toolbox as well as ubiquitous healthcare in
homes, workplaces or even in microgravity environment[2].

A major research topic in the engineering field is related
to estimating heart rate. Usually, the heart rate is estimated
over a given time-windowed BCG waveform, where either
time-domain features [3] or spectrum-domain features [4]
are used to derive an estimate of average heart rate. Our
earlier work [5] on multi-sensor fusion and cepstrum domain
signal processing has also suggested that this approach can
deliver more robust heart rate estimation in distorted BCG
waveforms by various artifacts.

Beyond heart rate estimation, researchers have looked into
measuring individual beat-to-beat intervals in BCG. In [6],
the authors presented a parametric BCG waveform model
and an algorithm for the detection of individual heart beats
and beat-to-beat interval lengths, and tested the method on a
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bed-mounted force-sensor based BCG system. Importantly,
it is shown that the method is able to accurately track the
instantaneous heart rate, and this suggests the potential of
BCG for heart rate variability (HRV) (see [7] for an indepen-
dent BCG for HRV measurement) and irregular arrhythmia
detection, which are more clinically relevant than average
heart rate measurement.

Moving forward, it is interesting to investigate if BCG
can provide accurate information about intra-beat cardiac
activities that, for example, may correlate even better than
electrocardiograph (ECG) with physiologically and anatom-
ically significant ischemic coronary artery disease (see an
example in [8]). A comprehensive overview of this inter-beat
level of cardiac monitoring is beyond the scope of this paper.
Instead, we would like to emphasize the timing intervals
between BCG components or across to other cardiac signals:
cardiac timing measurements are clinically important [9],
and a number of studies have demonstrated the feasibility
of measuring the time interval between ECG R-peak to the
BCG J-peak, or between BCG I and J peaks [10].

However, it is a considerable challenge to automatically
and accurately measure the time intervals, because the BCG
waveforms are prone to distortions by various sources of
artifacts such as body motions [10]. In other words, the key
waveform components may not be well-defined in individual
heart beats, often leading to detection errors in the algorithms
.

In this paper, we aim to further investigate the auto-
matic waveform detection and timing measurement in BCG,
from a signal processing and analysis viewpoint. We collect
synchronized ECG and BCG recordings from four healthy
human subjects using an in-house built multi-physiological
monitoring device. Different from prior arts such as [10],
we study the post-excercise ECG-BCG signals that embed
considerable variations in the cardiac functions. Furthermore,
we develop an interactive semi-automatic tool for detecting
and marking ECG-BCG waveforms in each heart beat. We
analyze the measured and post-processed time interval sig-
nals and show that there are interesting patterns of dynamic
associations between different time interval signals. We also
discuss on the development of improved detection algorithms
to address robustness and accuracy issues.

II. DATA COLLECTION

We built a sensing platform using the following compo-
nents for the acquisition of BCG and ECG signals. Two fiber-
optic based BCG sensor mats (see [11]) were attached to an
arm-chair: one at the seat position, the other at the back



position. Note that in the present study we investigate the
sensor signal from the seat position only. A pair of disposable
ECG electrodes were placed on the human’s RA and LL
points to capture a single lead ECG waveform. The BCG
sensors’ output and the ECG electrodes were connected to
a Neuroscan’s NuAmps neurophysiological signal amplifier
running at 5KHz sampling rate and 22-bit ADC resolution.
The digitized signals were monitored online while being
saved to local storage using the Neuroscan’s SCAN software.

In this preliminary study, we recruited five healthy adult
volunteering subjects (all male). Ethical approval had been
obtained from the National University of Singapore Insti-
tutional Review Board (NUS-IRB). None of the subjects
had existing or recent history of cardiac conditions. With
the aid of the experimenter, each of the subjects completed
a predefined series of tasks: 5 minutes rest in the chair,
3 minutes cardio workout of running on a thread-mill at
moderate intensity, 5 minutes post-exercise rest immediately
after the workout. In both Task 1 and Task 3, the subjects
were instructed to remain still and to avoid any body motion
and posture change.

It is also particularly important to control the transfer
time from the workout Task 2 to the post-workout rest Task
3, since the cardiac condition post-exercise could progress
rapidly. Therefore, re-seating the subject, reconnecting the
electrodes and sensors and stabilizing the signals must be
practiced and optimized beforehand. In one of the subjects,
this transfer was not done properly, rendering the recorded
signal not capturing the critical change during the post-
excercise recovery. Hence that subject was dropped from the
data processing and analysis.

III. DATA PROCESSING WITH AN INTERACTIVE SIGNAL
DETECTION AND MARKING TOOL

A. Preprocessing

All the recorded ECG and BCG signals were first down-
sampled to 1KHz and notch-filtered to remove the 50-Hz
powerline interference.

ECG signal was then high-pass filter processed using a 3rd
order Chebyshev Type II digital filter at 1Hz stop-frequency
and 30-db stop-band ripple, in order to remove low-frequency
baseline fluctuation.

BCG signal was high-pass filter processed using a 3rd or-
der Chebyshev Type II digital filter at 0.5Hz stop-frequency
and 30-db stop-band ripple, so as to remove the respiratory
component as well as other possible very low-frequency
distortions. The signal was then low-pass filtered at 20-Hz
using another 3rd order Chebyshev Type II digital filter with
30-db stop-band ripper.

B. The component detection algorithm

ECG signal processing involves detection of primarily the
R peak, using a traditional time-domain signal processing
algorithm. With the detected R peaks, the T peaks was
then detected using a simple local maximum search in a
specified time window with reference to the R peak. In one
of the subjects, the T peak component was particularly strong
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Fig. 1. A snapshot of the Interactive Detection and Marking Tool. In the
upper two graphs, the X-axis indicates the time points in milliseconds with
respect to the detected R peak of the present heart beat (the Y-axis value is
normalized). In the bottom graph, the X-axis is the number of heart beat,
while the Y-axis denotes the measured R-J interval in milliseconds. The tool
receives mouse click events or keyboard events to mark (accept or reject)
the measurement in this heart beat. Rejected heart beat points are excluded
from the R-J interval plot in the bottom graph.

so that a specifically designed high-pass filter (i.e. T wave
suppressing filter) was applied to the whole ECG signal just
in order to facilitate the R-peak detection.

BCG detection was performed after detection of ECG R
peaks. Particularly, the interactive tool (see next subsection)
shows the concurrent ECG and BCG waveforms for a few
heart beat cases of a subject, and the operator can then
specify a time range of possible I-J-K waveforms on the
plotted signals. This time range was applied uniformly to
all the heart beats from this particular subject, and a local
maximum search then detected the J-peak in the time range.
Thereafter the I or the K peak was detected using local
minimum search in the sub-time-window either before or
after the detected J-peak.

C. The interactive marking tool

As mentioned earlier, BCG signal is extremely susceptible
to various motion artifacts, making it crucial to validate
the I-J-K detection in each heart beat. As far as we know,
there is unfortunately neither established nor extensively
validated and widely accepted automated algorithm available
for the validation task. Thus, we develop a semi-automated
interactive marking tool, which will still be useful in future
studies for validating fully automated BCG peak detection
methods.

The tool has built-in the component detection algorithm
described in the previous subsection. It displays three graphs:



TABLE I
STATISTICS OF HEART BEAT REJECTION BY THE INTERACTIVE

DETECTION AND MARKING TOOL

Subject 1 2 3 4
Number of heart beat 298 421 862 399
Number of rejection 11 8 250 45
Rejection Rate (%) 3.7 1.9 29.0 11.3

the upper graph plots the ECG heart beats and the markers
of the detected R and T peaks; the middle graph plots the
BCG heart beat and the markers of the detected I, J and K
peaks: the lower graph plots the sequence of R-J interval
measurement in every heart beat that have been validated.

The tool automatically iterates from the first heart beat
till the last one. For the convenience of the operator (human
expert), a positive validation (i.e. accept) can be performed
either using the left-button on the computer mouse or the En-
ter button on the keyboard, a negative validation (i.e. reject)
can be performed using the right-button on the computer
mouse. The operator shall look closely at the morphology
as well as the timing of the I-J-K complex in BCG. Since
ECG signal is also subject to distortions, the operator shall
also check the detection of R and T peaks in ECG. The R-
J interval measurement sequence only plots the heart beat
points with validated detection in both BCG and ECG.

Further details of the marking tool are omitted due to
lack of page space, but will be presented in our separate
manuscript in the future.

IV. RESULTS

Table I summarizes the statistics of validation outcome by
using the interactive detection and marking tool. The range of
rejection is quite large, from 1.9% to close to 30%. This in-
dicates the present automated waveform detection algorithm
described above may not be able to consistently produce
accurate detection, to a large extend due to the fact that many
affected heart beat waveforms were so corrupted that peak-
detection based methodology became entirely suitable.

The heart rate was computed using the detected R peaks.
Particularly, instantaneous R-R intervals (a.k.a beat-to-beat
interval) were computed and the series of the intervals was
smoothed using a moving average window at a length of
10 (heart-beats). This essentially produced an average heart
rate estimate in 10 heart beat time window. The result is
illustrated in Figure 2.

In three of the four subjects, there was a clear trend
of decreasing heart rate, which was what was expected in
the recovery phase of the experiment protocol. Due to the
complexity and variation of the physiologic stress level in
the cardio workout, and also because of the variation in
the transfer timing from workout to recovery, it is difficult
to directly compare the recovery rate among the subjects.
Nevertheless, it appears that it takes no less than 100 heart
beat to recover to a relative stable state after our moderate
cardio workout task.

The third subject, however, is an exceptional case, in
which the heart rate stayed at the a low yet consistent level.

heart beat number
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Fig. 2. Progresses of recovery heart rate post cardio workout.
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Fig. 3. Associations of RR and RJ intervals. Each graph represents a
particular subject. Both of the left (’RR’) and right (’RJ’) Y-axes are in
milliseconds. The X-axis is the number of heart beat.

There are a few plausible reasons: the subject did not receive
sufficient workload during the treadmill running task; he was
very fit and had a very quick recovery; his transfer from
the cardio workout to the BCG+ECG measurement station,
however, was impeded by a technical hiccup.

Interestingly, although the inter-beat interval (IBI) did not
capture his recovery, our BCG and ECG timing measurement
captured the recovery process, as will be shown in below.

Figure 3 illustrates the processes of R-R and R-J intervals
in each of the four subjects. There were similar trends in
both processes, in terms of longer intervals. As expected,
the growing intervals indicate the decreasing cardio workload
(heart rate) and cardiac contractility (R-J interval). But the
two processes were not synchronized. In Subjects 1, 2 and
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Fig. 4. Associations of RT and RJ intervals. Each graph represents a
particular subject. Both of the left (’RT’) and right (’RJ’) Y-axes are in
milliseconds. The X-axis is the number of heart beat.

3, the R-J interval process exhibited a dip in the early stage
post-workout. In Subject 4, the R-J recovery still kept going
well after the RR interval recovered until 200 heart beat later.

Figure 4 illustrates the time courses of the measured R-T
and R-J intervals in each of the four subjects. Similarly to
the previous R-R and R-J comparison, the early downward
turn in the R-J interval process (in all except Subject 3)
was not correlated with the consistent ascending trend in
the R-T interval process. On the other hand, compared with
the previous figure, there is a closer relationship between
R-J and the ECG-derived timing in Subject 3, where both
processes captured the recovery progress. This suggests that
the R-T recovery process may be longer than R-R recovery
process: Subject 4 actually validates this where the R-T
asymptotically moved to the stable range at around 150
heart beat, while R-R achieved at around 100 heart beat.
Nevertheless, it seems that the R-J interval is able to capture
an even longer process of recovery.

V. CONCLUSIONS

In this paper, we have investigated the BCG waveform
detection from a signal processing and analysis viewpoint.
We collected synchronized ECG and BCG recordings from
four healthy human subjects using an in-house built multi-
physiological monitoring device. We study the post-cardio-
workout ECG-BCG signals that embed considerable varia-
tions in the cardiac functions. Furthermore, we develop an
interactive semi-automatic tool for detecting and marking
ECG-BCG waveforms in each heart beat. We analyze the
measured and post-processed time interval signals and show
that there are interesting patterns of dynamic associations

between different time interval signals. Specifically, all the
R-R, R-T and R-J intervals can capture the post-workout
recovery cardio process, but R-J interval has a longer process
of recovery, and also exhibits an interesting initial downward
turn that may be the subject of other physiologic and clinical
studies in the future.

Furthermore, the result also indicates that accurate de-
tection of BCG waveform in each individual beat is a
challenging task, subject to considerable distorations by
various motion artifacts in the same spectrum range of
BCG. Thus, we suggest that furture work shall look into
development and extensive validation of advanced signal
processing techniques based on more principled modeling
of beat-to-beat dynamics of cardiac timing and waveform
morphology.
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