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67 million natural product-like 
compound database generated via 
molecular language processing
Dillon W. P. Tay   1 ✉, Naythan Z. X. Yeo1,2, Krishnan Adaikkappan   1,3, Yee Hwee Lim1,4 & 
Shi Jun Ang1,5 ✉

Natural products are a rich resource of bioactive compounds for valuable applications across multiple 
fields such as food, agriculture, and medicine. For natural product discovery, high throughput in silico 
screening offers a cost-effective alternative to traditional resource-heavy assay-guided exploration 
of structurally novel chemical space. In this data descriptor, we report a characterized database of 
67,064,204 natural product-like molecules generated using a recurrent neural network trained on 
known natural products, demonstrating a significant 165-fold expansion in library size over the 
approximately 400,000 known natural products. This study highlights the potential of using deep 
generative models to explore novel natural product chemical space for high throughput in silico 
discovery.

Background & Summary
Nature produces natural products of immense chemical diversity1,2. A vast assortment of molecular scaffolds are 
produced by organisms to interact with their environment and to engage in chemical warfare with each other. 
This natural diversity has also been leveraged for wide-ranging applications such as in agricultural pesticides to 
increase food production3, food preservatives to facilitate distribution and storage4,5, and most prominently as 
therapeutic agents to treat diseases6–8. Indeed, it has been estimated that approximately 80% of all clinically used 
antibiotics can trace their origins to a natural product6.

Despite nature’s potential for providing valuable molecules, assay-guided natural product discovery has been 
a low-yielding investment since the golden age of discovery in the 1960s9. After the initial wave of uncovering 
structurally unique and accessible natural product chemical space, subsequent efforts to venture into less acces-
sible chemical space or to “rediscover” known natural product classes for novel applications have been met with 
limited success10. Tremendous effort must be invested in the biosynthesis, curation and characterization of nat-
ural product libraries, resulting in the culmination of only ∼400,000 fully characterized natural products known 
to-date11. The significant financial and resource requirements of assay-guided investigations have also resulted 
in a broad dampening of commercial interest surrounding natural product discovery12. However, the advent of 
deep generative modelling13 and high throughput in silico screening14 presents an opportunity to circumvent 
traditional time-consuming, costly, and experimentally-driven natural product discovery to reformulate it as a 
computationally-driven inverse design problem15. The potential of such an approach would also scale with the 
increasing size and availability of natural product databases16, growing alongside the trend of digitalization in 
chemical research17. In this data descriptor, we report an expansive, curated database18 of 67,064,204 natural 
product-like molecules generated via an in silico pipeline (Fig. 1), representing a significant 165-fold expansion 
over the ∼400,000 known natural products11. We envision in silico structural generation playing an integral role 
in the future of natural product discovery19.
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In contrast to manually curated natural product libraries, deep generative models transcend the boundaries 
of human-dependent molecular design to significantly expand chemical search space by orders of magnitude 
while concurrently reducing financial and resource requirements20,21. Some examples of deep generative archi-
tectures that have been employed for de novo molecular design include variational autoencoders (VAE)22,23, 
recurrent neural networks (RNN)24–26, and generative adversarial networks (GAN)27–29, with each adopting a 
different strategy with their own strengths and weaknesses30. The SMILES-based (Simplified Molecular Input 
Line Entry System)31 RNN architecture with long short-term memory (LSTM) units was favoured in this work 
for its demonstrated ability to robustly generate novel and chemically diverse molecular entities in a low data 
regime32. A systematic benchmarking study33 reported that SMILES-based LSTM generated 95.9% valid molec-
ular structures, a significant improvement over VAE (87.0%) and GAN (37.9%) based architectures.

Here, we trained an LSTM model24 on tokenized SMILES (with stereochemistry removed) from 325,535 
(80%) out of the 406,919 known natural products in COCONUT, the collection of open natural products 
(https://coconut.naturalproducts.net/, accessed 1 Aug 2022)11. The model was able to break down SMILES into 
unique tokens (e.g. C, N, S, O, c, n, 1, 2..etc), learn how to assemble these token together according to the molec-
ular language of natural products, and generate 100 million natural product-like SMILES with no specified 
stereochemistry34. Although stereochemistry in natural products can confer specific bioactivity35, our pipeline 
removes stereochemistry to reduce data complexity, lower file size, and improve fidelity of the generated struc-
tural database. In any case, a range of feasible stereoisomers for each molecule can still be obtained through 
iterative enumeration of its 3D structures36,37 followed by back transformation to stereospecific SMILES38. 
Following this approach, extended isomer libraries of shortlisted SMILES of interest can be generated to cover 
wider isomeric space than a database of pre-defined stereospecific SMILES.

Although alternative approaches for the generation of natural product virtual libraries have been 
attempted39,40, prior libraries have been limited in terms of novelty (frequent re-occurrence of well-known scaf-
folds)38, natural product-likeness (43% meeting threshold compared to 85% in the training set)39, and scale 
(<1.5 million molecules)39,40. Moreover, these previously generated natural product virtual libraries have not 
been publicly released. In this data descriptor, we present an openly available virtual library18 of >67 million 
natural product-like SMILES with a distribution of natural product-likeness scores similar to that of known nat-
ural products (Fig. 2) yet encompassing expanded physiochemical and structural space, indicating its potential 
for in silico discovery of natural products.

Cheminformatics toolkits RDKit36, ChEMBL chemical curation pipeline41, NP Score42, and NPClassifier43 
were employed to sanitize, analyze, and characterize the generated 100 million natural product-like SMILES 
database (Fig. 2).

First, RDKit36 function Chem.MolFromSmiles() was used to filter out 9,596,585 syntactically invalid SMILES 
from the 100 million generated set. Second, to ensure molecular uniqueness within the dataset, RDKit functions 
Chem.MolToSmiles(Chem.MolFromSmiles()) and Chem.inchi.MolToInchi() was used to convert the generated 
SMILES into canonical SMILES and International Chemical Identifier (InChI) representations for comparison 
and filtering, resulting in the removal of 22,484,883 (22%) duplicates (Fig. 2a). Third, the ChEMBL chemical 
curation pipeline41 was applied for further sanitization and standardization by:

	(1)	 Checking and validating chemical structures, assigning an error score if structural issues are detected. 
Error scores increase with the severity of the problem.

	(2)	 Standardizing chemical structures based on FDA/IUPAC guidelines44

	(3)	 Generating parent structures by removing isotopes, solvents, and salts

Through this process, a further 854,328 invalid molecules with penalty scores exceeding 5 (indicating severe 
structural issues), were filtered out. Combined with the earlier detected syntactically invalid SMILES, a total 
of 10,450,913 (11%) invalid generated SMILES were identified and removed (Fig. 2a). The top 2 structural 
errors reported amongst the remaining valid molecules were (1) undefined stereochemistry (95%), which was 
due to the generation of SMILES without stereochemistry, and (2) the need for (de)protonation (2%), which 
was addressed later in Step 3 of the ChEMBL chemical curation pipeline. On the whole, these pre-processing 
steps refined the initial dataset down to this work’s reported 67,064,204 (67%, Fig. 2a) valid, unique, natural 
product-like SMILES generated database18.

Fourth, RDKit was used to calculate natural product-likeness scores (NP Score)42 for both known natural 
product SMILES and generated SMILES (Fig. 2b). NP Score employs atom-centred fragments (HOSE codes)45 

Fig. 1  Workflow to generate and characterize a natural product-like compound database using a recurrent 
neural network trained on known natural products.
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and bonding information to characterize structural features and calculate a Bayesian measure of molecular 
similarity to known natural product structural space42. The NP Score distribution of the generated natural 
product-like SMILES was found to closely resemble that of known natural products from the COCONUT data-
base (Fig. 2b) with a Kullback-Leibler (KL) divergence of 0.064 nats, supporting that natural product-like mol-
ecules had been generated.

Fifth, the NPClassifier43 toolkit was used to classify both natural product-like SMILES generated from the 
trained model and known natural product SMILES from the COCONUT database (Fig. 2c). NPClassifier43 is a 
deep learning tool that considers structural features (counted Morgan fingerprints)46, taxonomy of the produc-
ing organism, nature of the biosynthetic pathway, and biological activity to characterize molecules in a holistic 
natural product classification framework. Despite this, 7,779,787 (12%) of the generated valid SMILES received 
no pathway classification – a larger fraction than 35,708 (9%) of the known natural product SMILES that also 
received no pathway classification. It has been reported43 that deficiencies in NPClassifier can be traced back to 
limitations in its training data as the model relies on existing knowledge of natural products to classify molecules 
based on structural similarities. The comparatively higher percentage of generated SMILES with no NPClassifier 
pathway class suggests the presence of either synthetic structural features, or novel natural product class(es). 
However, similarities in the natural product-likeness score distributions of the generated and known datasets 
(KL divergence of 0.064 nats) suggests promising potential toward the latter. The remaining 59,284,417 (88%) of 
the generated valid natural product-like SMILES were annotated with a comparable distribution of biosynthetic 
pathways as known natural products from the COCONUT database with a KL divergence of 0.047 nats.

Finally, to describe physiochemical space covered by known natural products in the COCONUT database 
versus the >67 million natural product-like generated database, 10 physiochemical molecular descriptors for 
each molecule were calculated using RDkit36:

Fig. 2  Comparison overview of generated and COCONUT11 natural product databases. (a) Overview of 100 
million generated natural product-like Simplified Molecular Input Line Entry System (SMILES)31 generated 
with trained long short-term memory (LSTM) model. (b) Natural product-likeness score (NP Score)42 
distributions and (c) NPClassifier43 pathway classifications of valid, unique natural product-like SMILES 
generated by LSTM model versus known natural product SMILES from COCONUT database11. NOTE: 
summed percentages may exceed 100% as some molecules have more than 1 label.
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	 1.	 Number of aromatic rings
	 2.	 Number of aliphatic rings
	 3.	 Wildman-Crippen LogP (partition coefficient)47

	 4.	 Molecular weight
	 5.	 Number of hydrogen bond acceptors
	 6.	 Number of hydrogen bond donors
	 7.	 Number of heteroatoms
	 8.	 Topological polar surface area (TPSA)
	 9.	 Number of rotatable bonds
	10.	 Number of valence electrons

T-distributed stochastic neighbour embedding (t-SNE) dimensionality reduction of the 10 calculated molec-
ular descriptors into two-dimensional space was performed and plotted to visualize both physiochemical and 
structural space coverage (Fig. 3a).

The t-SNE 2D comparison shows a significant increase in physiochemical space covered by generated 
SMILES (Fig. 3a), indicating the presence of structurally novel natural product-like molecules in the generated 
database. Density plots (Fig. 3b,c) showing the concentration of structures across the t-SNE 2D projected space 
also highlight the significantly expanded structural space offered by the generated database even in overlapping 
physiochemical space (Fig. 3c). Overall, this workflow has enabled us to generate a significantly expanded data-
base18 of 67,064,204 characterized natural product-like molecules, greatly increasing natural product chemical 
space by 165-fold over the currently estimated 400,000 natural products known11. The >67 million natural 
product-like compound database18 along with supporting files for the reproduction of this work has been made 
available on figshare18 (see Data Records, Table 1). To facilitate usage, the structure and organization of the 
reported database has also been provided (see Supplementary Table S1).

As an indication of its cost efficiency, the total computation time for training and sampling was less than 24 hours 
on an Intel 8268 48-Cores @ 2.9 GHz Nvidia V100 (VRAM = 32 GB and RAM = 192 GB) compute node. A price 
estimate for similar computing resources on Amazon Web Services (https://calculator.aws/, accessed 23 March 2023)  
– 24 hours of an dedicated instance (Amazon EC2, c5n.18xlarge instance, 72 vCPUS, 192 GiB memory, Asia-Pacific 
(Singapore) region, 100 gigabit network performance) would cost USD$155. In comparison, a commercially available  
2,576 natural product library is priced two orders of magnitude higher at USD$33,513 (https://www.selleckchem. 
com/screening/natural-product-library.html, accessed 23 March 2023). Computationally generated natural  
product databases such as the one reported here are well positioned to push the boundaries of known natural product  
structures, provide expanded search spaces, and act as a key enabling resource to progress the next generation  
of in silico high throughput screening methods for natural product discovery.

Methods
Molecule generation.  All software programs were implemented in Python (v3.6.10) with PyTorch (v1.1.0) 
on an Intel 8268 48-Cores @ 2.9 GHz Nvidia V100 (VRAM = 32 GB and RAM = 192 GB) compute node running 
on an RHEL 8.3 operating system. The details of all other dependencies can be found in the following environment.
yml file (https://github.com/SIBERanalytics/Natural-Product-Generator/blob/master/environment.yml). The 
generative model was trained with a recurrent neural network (RNN) architecture using long-short-term-mem-
ory (LSTM) units (https://github.com/skinnider/low-data-generative-models). To assemble the training and held 
out datasets, the COCONUT collection of open natural products (https://coconut.naturalproducts.net/, accessed 
1 Aug 2022)11 was filtered to remove invalid SMILES and take away stereochemistry. This filtered COCONUT 
dataset was then split into 3 portions, 292,981 (72%) for training, 32,554 (8%) for validation, and 81,384 (20%) as 

Fig. 3  Visualization of expanded physiochemical and structural space afforded by the generated database. (a) 
T-distributed stochastic neighbour embedding (t-SNE) 2D projection of 10 RDkit physiochemical descriptors 
for 67,064,204 natural product-like structures generated from our trained model and 406,919 known natural 
product structures from COCONUT, the collection of open natural products11. (b) Density plot of known 
natural product structures in t-SNE 2D projected space. (c) Density plot of generated natural product-like 
structures in t-SNE 2D projected space.

https://doi.org/10.1038/s41597-023-02207-x
https://calculator.aws/
https://www.selleckchem.com/screening/natural-product-library.html
https://www.selleckchem.com/screening/natural-product-library.html
https://github.com/SIBERanalytics/Natural-Product-Generator/blob/master/environment.yml
https://github.com/skinnider/low-data-generative-models
https://coconut.naturalproducts.net/


5Scientific Data |          (2023) 10:296  | https://doi.org/10.1038/s41597-023-02207-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

a held-out dataset for testing. The combined training and validation dataset (80% of filtered COCONUT dataset) 
was augmented by 10 times with their respective non-canonical SMILES using SmilesEnumerator (http://github.
com/EBjerrum/SMILES-enumeration) prior to RNN training. This has been shown to improve the validity of the 
SMILES sampled from the trained model24. Determination of the vocabulary of the known natural products was 
carried out by deconstructing SMILES strings into elemental tokens (e.g. C, N, S, O, c, n, 1, 2..etc). The network 
consists of 3 layers of RNN with a hidden layer dimension of 512 and no dropout. Training of the network was 
done with a batch size of 128, a learning rate of 0.001, Adam optimizer, and max epochs set at 1,000. Early stop-
ping patience of 10,000 minibatches was employed. A total of 100,000,000 SMILES strings were sampled from the 
trained model (with best validation loss of 0.55) after completion of model training.

RDKit and ChEMBL chemical curation pipeline processing.  Data processing was performed using 
python packages RDKit36 (v2020.09.1.0) and chembl_structure_pipeline (v1.0.0) (https://github.com/chembl/
ChEMBL_Structure_Pipeline). Generated SMILES strings were converted to canonical SMILES, InChI, and 
InChIKey molecular representations by sequential application of RDKit functions Chem.MolFromSmiles fol-
lowed by Chem.MolToSmiles, Chem.inchi.MolToInchi or Chem.inchi.MolToInchiKey respectively. SMILES 
strings were considered syntactically invalid if no valid molecular representation was returned from either Chem.
MolFromSmiles, Chem.MolToSmiles, Chem.inchi.MolToInchi or the Chem.inchi.MolToInchiKey operation. 
Unique molecular representations, whether canonical SMILES, InChI or InChIKey, were identified by creat-
ing a dictionary from the respective molecular representations using the dict.fromkeys(molecular representa-
tion) command. Unique generated molecules were then converted to molblock with RDKit function Chem.
MolToMolblock before being passed through the ChEMBL structure pipeline to sequentially (1) check for struc-
ture quality using checker.check_molblock, (2) standardize structures with chembl_structure_pipeline.stand-
ardize_molblock and finally, (3) get parent structures by removing isotopes, salts and solvents with standardizer.
get_parent_molblock. Structures returning checker penalty scores of more than 5 were removed. The maximum 
error score (Max_Error_Score) and the error types (Error_Type) for each remaining entry were recorded. 27 
RDkit molecular descriptors (BalabanJ, BertzCT, NumAromaticRings, HallKierAlpha, Kappa1, Chi0, Chi0n, 
Chi0v, MolLogP, MolMR, MolWt, ExactMolWt, HeavyAtomCount, HeavyAtomMolWt, NHOHCount, 
NOCount, NumHAcceptors, NumHDonors, NumHeteroatoms, RingCount, FractionCSP3, TPSA, LabuteASA, 
NumRotatableBonds, NumValenceElectrons, NumSaturatedRings, NumAliphaticRings) from the were calcu-
lated and appended for each remaining entry.

NPScore and NPClassifier annotations.  Natural product-likeness scores (NP_score)42 for each generated mol-
ecule were calculated using npscorer (https://github.com/rdkit/rdkit/tree/master/Contrib/NP_Score). Natural 
product pathway (pathway), superclass (superclass), and class (class_type) classifications were assigned using 
NPClassifier API (https://npclassifier.ucsd.edu/)43. Queries without outputs from NPClassifier were assigned the 
value “none”. Percentage population of generated database receiving value “none” – pathway (11.6%), superclass 
(40.0%), class (51.1%).

Kullback-Leibler (KL) Divergence.  A measure of the statistical distance between the property probability 
distributions of known natural product SMILES and generated natural product-like SMILES were calculated with 
SciPy (v1.7.3) using the function scipy.special.rel_entr(P,Q). This is also described by the following equation:

∑− =










∣∣Kullback Leibler KL Divergence D P Q P x P x
Q x

( ) , ( ) ( ) log ( )
( )KL

Where, P(x) = probability of known natural product SMILES having value x for a given property and 
Q(x) = probability of generated natural product-like SMILES having value x for a given property.

NOTE: summation is done across all the possible discrete values of the property (e.g. NPClassifer pathways) 
where P(x) > 0. In the case where values are in a continuum (i.e. NPScore), ranges of width 0.1 were taken as dis-
crete values.

Visualisation of physiochemical and structural space coverage.  T-distributed stochastic neighbor 
embedding (t-SNE) dimensionality reduction was performed on 10 RDkit descriptors (NumAromaticRings, 
NumAliphaticRings, MolLogP, MolWt, NumHDonors, NumHAcceptors, NumHeteroatoms, TPSA, 
NumRotatableBonds, and NumValenceElectrons) using scikit-learn (v0.23.2)48 function sklearn.manifold.TSNE 

Filename Description

coconut_smiles_nostereo_training80.txt Training and validation dataset of 325,535 unique canonical SMILES without stereochemistry 
from COCONUT database, January 2022 version (Accessed on 1 August 2022)

coconut_smiles_nostereo_heldout20.txt Held-out test dataset of 81,384 unique canonical SMILES without stereochemistry from 
COCONUT database, January 2022 version (Accessed on 1 August 2022)

coconut_rnn_model.pt Trained RNN model

100million_sampled_smiles.smi 100 million generated natural product-like SMILES sampled from trained RNN model

67M_generated_analysed.json Json file of 67,064,204 unique canonical generated SMILES with molecular descriptors

Table 1.  List of files encompassing the datasets and the trained model described in this work that are available 
on figshare18.
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with the following parameters: n_components = 2, init = “pca”, random_state = 7. Seaborn (v0.11.2) histplot 
function was used with the following parameters: bins = 50, vmin = 0, vmax = 100,000 to generate structural 
density maps from the t-SNE data of the generated and known SMILES.

Data Records
The 67,064,204 natural product-like compound database generated via molecular language processing in this 
work has been deposited on figshare (Table 1)18. The database is organized in a single, two-dimensional array 
flat model format where elements in each column are the same type of data for a given molecular descriptor and 
elements in the same row relate to the same molecule. There are a total of 38 columns (i.e. 38 descriptors for each 
molecule) and 67,064,204 rows (i.e. 67,064,204 molecules in the database). The column numbering, names, data 
types, and descriptions are listed in Supplementary Table S1.

Technical Validation
Testing of generated natural product-like molecules.  From the 406,919 known, valid, unique, canon-
ical, natural product SMILES strings in the COCONUT11 database with stereochemistry removed, 81,384 (20%) 
were held-out and the remaining 325,535 (80%) were used to train and validate the recurrent neural network 
to generate natural product-like SMILES. Of the 81,384 known natural products that were held out as a test set 
from the training dataset, 30,229 (37% of held-out set) known natural products were reproduced in the generated 
natural product-like SMILES database, confirming the trained model can generate actual natural product mol-
ecules. In addition, the natural product likeness scores (NP Score)42 and NPClassifier43 pathway distributions of 
the generated natural product-like molecules have low KL divergence scores of 0.064 and 0.047 nats respectively 
when referenced against the observed distributions of known natural products from the COCONUT database11, 
indicating that natural product-like molecules have been generated.

Usage Notes
This generated natural product-like SMILES database covering novel physiochemical and structural space may 
serve as starting points for high throughput in silico discovery of functional natural products. Aside from poten-
tial food, agrochemical, and therapeutic applications, there has been increasing consumer demand for natural 
product alternatives to synthetic ingredients for their perceived health and wellness benefits49,50. Such natural 
alternatives are also amenable to sustainable manufacturing processes via synthetic biology approaches51,52, add-
ing to their attractiveness as an answer from chemical manufacturers to environmental regulators53 on issues of 
climate change, pollution, and resource depletion54.

Code availability
Code used to train the molecular language model as well as the trained model used for natural product-like 
molecule generation is available from GitHub at https://github.com/SIBERanalytics/Natural-Product-Generator.
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