
Efficient Perturbation Inference and Expandable Network for Continual Learning

Fei Dua, Yun Yangb,∗, Ziyuan Zhaoc, Zeng Zengc,d

aSchool of Information Science and Engineering, Yunnan University, Kunming 650091, China
bNational Pilot School of Software, Yunnan University, Kunming 650091, China

cInstitute for Infocomm Research (I2R), A*STAR, 138632, Singapore
dSchool of Microelectronics, Shanghai University, Shanghai, China

Abstract

Although humans are capable of learning new tasks without forgetting previous ones, most neural networks fail to do so because
learning new tasks could override the knowledge acquired from previous data. In this work, we alleviate this issue by proposing a
novel Efficient Perturbation Inference and Expandable Network (EPIE-Net), which dynamically expands lightweight task-specific
decoders for new classes and utilizes a mixed-label uncertainty strategy to improve the robustness. Moreover, we calculate the
average probability of perturbed samples at inference, which can generally improve the performance of the model. Experimental
results show that our method consistently outperforms other methods with fewer parameters in class incremental learning bench-
marks. For example, on the CIFAR-100 10 steps setup, our method achieves an average accuracy of 76.33% and the last accuracy
of 65.93% within only 3.46M average parameters.

Keywords: Continual Learning, Dynamic Networks, Class Incremental Learning, Uncertainty Inference

1. Introduction

A long-standing goal of general artificial intelligence is to
develop a continual learning system that learns new tasks over
time and keeps the performance of old tasks. However, most
trained neural networks will inevitably override the acquired
knowledge for learning new tasks, which is commonly known
as catastrophic forgetting [1]. Ideally, Joint Training [2], op-
timizing a model on all tasks simultaneously, can effectively
address the catastrophic forgetting problem, but in practice,
the data of previous tasks will inevitably be discarded as tasks
increase. Therefore, Continual Learning (CL) or Incremental
Learning (IL) is developed to accommodate new tasks and ac-
quired knowledge.

There has been much effort attempting to address catas-
trophic forgetting along different lines [3, 4, 5, 6, 7, 8]. Among
them, the existing CL approaches can be roughly classified into
three categories: regularization-based methods [4, 6], mem-
ory replay methods [3, 9, 10], and parameter isolation methods
[8, 11, 12]. For the regularization-based branch, these works
preserve prior knowledge by introducing an extra regularization
term into the loss function to control the plasticity of network
weights. But as new tasks continuously arrive, the available
model parameters rapidly decrease, and regularization-based
methods are hard to maintain the long-term trade-off between
new tasks and acquired knowledge. For the memory replay
methods, these works mainly focus on storing explicit or im-
plicit data in memory to review prior knowledge. Although
memory replay methods can effectively mitigate catastrophic

∗Corresponding author
Email address: yangyun@ynu.edu.cn (Yun Yang)

forgetting, these methods are heavily dependent on the amount
of data that can be saved and also need to consider the imbal-
ance between new data and memory exemplars [13]. As for the
parameter isolation methods, they assign different sub-model
parameters to specific tasks to prevent forgetting. But as the
model grows, the dynamic architecture may become redundant
and inefficient [8, 11]. In human learning, compressing ac-
quired knowledge, taking notes, and expanding the boundaries
of new knowledge are unified and instinctive behaviors. There-
fore, in recent research work, the above three types of contin-
ual learning methods are usually integrated to build a powerful
model to defy forgetting.

The core capability of CL models is to effectively maintain
the right trade-off between new concepts and acquired knowl-
edge, also known as the stability-plasticity dilemma. In detail,
although high stability can effectively retain previous knowl-
edge, it also impedes the acquisition of new knowledge. On the
contrary, models with high plasticity, while adaptable to novel
knowledge, often cause catastrophic forgetting. To address this
problem, one of the intuitive thoughts is to assign isolated pa-
rameters to tasks by dynamically expanding the network. How-
ever, it also raises two problems: how to reduce parameter re-
dundancy in long-term dynamic growth and identify the task
branches corresponding to the data at inference?

Around reducing memory overhead, recent works [8, 14,
15, 16, 17, 18] utilize pruning [19] techniques to compress
the model or re-arrange internal structures by regularization or
knowledge distillation [20]; however, they also add a lot of
extra post-processing time and training tricks. Although dy-
namically expandable networks have an inherent advantage in
mitigating catastrophic forgetting, the task-ID must be given

Preprint submitted to Neural Networks September 14, 2022

at inference. Previous work oversimplified the problem by as-
suming that having an oracle provided such prior knowledge
to the model. More recently, [8, 11, 14, 21] have started ad-
dressing the more difficult class-incremental learning setting
(without task-ID at inference), yet, these strategies only con-
catenate all sub-classifiers into a single classifier and take the
highest score of merged classifiers as the best candidate. Be-
sides, iCaRL [3] utilizes clustering [22, 23] to calculate the sim-
ilarity of mean-of-exemplars. StackNet [24] utilizes GANs to
generate the task-related feature. And Expert gate [7] uses au-
toencoder as a task control gate to learn task correlation. But
these methods also bring additional parameter overhead.

In this work, we aim to design a more efficiently expand-
able architecture for class-incremental learning (CIL). The pro-
posed Efficient Perturbation Inference and Expandable Net-
work (EPIE-Net) consist of two parts: (1) a lightweight multi-
scale hierarchical encoder is used to embed the image into the
shared latent space, and (2) some dynamic lightweight task-
specific multi-scale hierarchical decoders forward the latent
code to the task-specific classifying space. The lightweight
multi-scale shared encoder and task-specific decoder frame-
work can effectively alleviate the parameter redundancy prob-
lem of Dynamic growing models. Moreover, we propose a
mixed-label uncertainty learning strategy to alleviate the rep-
resentation drift phenomenon in continual learning and utilize
the average probability of perturbed samples at inference to re-
duce the uncertainty of the model.

Our method is mainly evaluated on CIFAR10, CIFAR100,
and ImageNet-Sub datasets. Experimental results show that our
method consistently outperforms other state-of-the-art methods
with fewer parameters. The main contributions of our work can
be summarized as follows:

• We propose lightweight multi-scale hierarchical en-
coder/decoder architecture to achieve efficient growth for
continual learning.

• The proposed mixed-label uncertainty learning strategy
can effectively improve the robustness of the model.

• The proposed mean perturbation inference can be used as
a plug-and-play module to boost the prediction accuracy
of the model.

• Our approach achieves a new state-of-the-art with fewer
parameters on CIL and blurry-CIL setups.

The rest of the paper is organized as follows. We discuss re-
lated work in Section 2. The Efficient Perturbation Inference
and Expandable Network (EPIE-Net) is detailed in Section 3,
followed by experiments in Section 4. Finally, we summarize
this paper and discuss some potential research directions in Sec-
tion 5.

2. Related work

The EPIE-Net framework builds on the insights of multiple
earlier attempts to address class-incremental learning. In the
section, we summarize the most related ones to our work.

2.1. Dynamically Architectures for Continual Learning

A major trend in CL research has been proposing dynamical
network architectures to cope with the growing learning tasks.
Rusu et al. [12] propose a progressive network structure that
laterally connects new branches to previously networks, but the
complexity of the model increases quadratically with the tasks.
Aljundi et al. [7] use an autoencoder as a task control gate to
learn task correlation, but this method is parameter-consuming
because an additional classification network and an autoen-
coder are constructed at each stage of CL. PathNet [25] uses
evolutionary algorithms to find a specific path for each learn-
ing task in a super network and reuses these paths in new tasks
to speed up learning. However, this method cannot incremen-
tally learn new classes, and the use of evolutionary algorithms
is relatively inefficient. Moreover, RPS-Net [11] combines a
variety of methods such as path selection strategies, knowledge
distillation, and retrospection to learn a dynamic growth model
for class-incremental setting. Yet, previous works induce dra-
matic parameter overhead in long-term growth. To have less
parameter redundancy, Kim et al. [24] propose StackNet that
dynamically expands filters for new tasks and utilizes GAN
as an index module to distinguish the origin of a given input
sample. DER [8] utilizes a two-stage learning approach to ex-
pand an additional representation extractor with a differentiable
channel-level mask-based pruning strategy and then retrain the
classifier with memory data. Unfortunately, DER is hyperpa-
rameter sensitive and adds a lot of extra post-processing time.
Simple-DER [14] uses a unified pruning method to reduce the
hyperparameter’s selection, but the compression efficiency is
lower than DER. More recently, DyTox [21] directly adopts
a transformer-based lightweight encoder/decoder architecture
to add task-specific decoders for the new task. In a similar
spirit, we design a multi-scale hierarchical convolutional en-
coder/decoder architecture that allows for more significant pa-
rameter savings. Compared with DER, EPIE-Net does not need
to design a pruning strategy to compress the model, which saves
training time and reduces the model instability caused by prun-
ing.

2.2. Mixed-Label Data Augmentation

Mixed-label data augmentation technique, which mixes mul-
tiple images and their labels to encourage model learning
smooth prediction, has been adopted successfully to improve
the performance of deep learning models in various tasks. For
instance, MixUp [26] generates new vicinity samples and their
labels by computing the convex combination of pairs of sam-
ples. To be specific, it does a pixel-level interpolation be-
tween images and linear interpolation between one-hot labels.
Moreover, MixUp variants [27] perform feature-level interpo-
lation to encourage neural networks to softer prediction on in-
terpolations of hidden representations. However, MixUp-based
method samples are locally ambiguous and unnatural. To han-
dle this issue, CutMix [28] combines two images by replacing
the image region with a patch from another training image and
does linear interpolation between one-hot labels. Other MixUp-
based methods have been recently explored in [29, 30, 31, 32]

2

Conv Embedded

Residual Block

Residual Block Conv Block

Shared Encoder

Conv Block

Residual Block

Residual Block Conv Block

Fully connected

uncertainty score

Task 2 Decoder

Conv2d

Batch Norm

GELU

Conv Block

Conv Block

Conv Block

Conv Block
Conv Block

Conv Block

Residual Block

Residual Block Conv Block

Fully connected

uncertainty score

Task 3 Decoder

Conv Block

Residual Block

Residual Block Conv Block

Fully connected

uncertainty score

Task 1 Decoder

Task t

Residual Block

 !"#$%& !"#$%'
 !"#$%(!"#$%)

 !"#$%&:'

Figure 1: An overview of our EPIE-Net: The network architecture comprises a shared lightweight encoder (In Section 3.2.1) that maps images into the middle-level
representation, and some dynamic lightweight task-specific decoders (In Section 3.2.2) that forward the representation to task-specific classifying space. All output
embeddings are finally concatenated together as one classifier.

to improve the robustness of feature extractors. However, these
methods mainly mix images or features in an unsupervised
manner. In the class-incremental learning context, Bang et al.
[33] introduce mixed-label data augmentation to enhance the
diversity of exemplars and alleviate the side effects caused by
the change of class distribution between current tasks and pre-
vious task. Our work differs from the previous works: we re-
design the mixed-label data augmentation to construct local and
global mixed images and their smooth labels to approximate the
uncertainty of class distribution. Our label-mixed data augmen-
tation can better learn global and local consistency to improve
the robustness of representations.

3. Our Method

Our goal is to learn a lightweight model that can efficiently
expandable grow parameters to handle class-incremental learn-
ing problems. Next, we present the formulation of class in-
cremental learning in Section Section 3.1 to explain the class-
incremental learning setup. Then we introduce the lightweight
multi-scale hierarchical convolutional encoder/decoder archi-
tecture in Section 3.2 to construct the EPIE-Net framework. Af-
ter this, we describe how to use a two-stage training strategy to
train the EPIE-Net framework In Section 3.3.

3.1. Class Incremental Learning Setups
We consider the case of continual learning where tasks and

their corresponding data arrived one after another in a sequen-
tial matter. The term “task” in continual learning refers to an

isolated training phase where the coming data can belong to
a different set of classes, a domain shifted dataset, or a new
output space. Specifically, Class Incremental Learning (CIL)
setup demands model training with multi-phases classification
datasets {Xt,Y t}. At any t training phase, xt ∈ Xt is the input
image and yt ∈ Y t is the corresponding label. The CIL setup
is strictly required that training labels at all phases do not inter-
sect. Although it can effectively assess catastrophic forgetting,
it deviates from the real world where arrived data do not con-
tain new classes exclusively. For more practical applications,
[34, 33] consider a more general and realistic blurry-CIL setup
where the previous classes will still appear with a lower proba-
bility in subsequent learning. The blurry-CIL setup makes the
task boundaries vague and requires that each task is given se-
quentially as a stream. Following Bang et al. [33], we formulate
either blurry or disjoint CIL setups by intersecting labels or not.

dis joint −CIL⇒ Y t−1 ∩ Y t = ∅

blurry −CIL⇒ Y t−1 ∩ Y t , ∅
(1)

For both blurry and disjoint CIL setups, In the t testing phase,
the model needs to predict all seen test classes Y t

all =
⋃t

i=1 Y i .
Note that class-incremental learning allows holding a few old
samples (belonging to tasks 1 to t − 1) as rehearsing data in
memory to help prevent model forgetting classes.

3.2. Lightweight Multi-scale Hierarchical Encoder/Decoder
Architecture for Class Incremental Learning

The proposed EPIE-Net comprises a shared encoder that
maps images into the middle-level representation and some dy-

3

Figure 2: Mixed-label Uncertainty Learning. Images are augmented into n mixed images by our mixed-label augmentation strategy. They are then input into the
network to calculate the average probability of these mixed images.

namic task-specific decoders that forward the representation to
task-specific classifying space. For example, the panda photo of
the new task is first input to the shared encoder for feature ex-
traction. Then the middle-level representation is input to each
task-decoder, respectively. Finally, we concatenate the output
layers of all task decoders as a long embedding vector. Contrary
to previous transformer-based architecture, we use lightweight
multi-scale hierarchical convolution modules to achieve effi-
cient growth.

3.2.1. Shared multi-scale hierarchical encoder
As opposed to the transformer-based encoder, for the sake

of saving parameters, we use a multi-scale hierarchical encoder
to extract features. The main motivation behind this is to fuse
information from multi-level features into hidden variables,
which can help the decoder to capture specific correlations of
different level features with tasks in the subsequent classifica-
tion. As shown in Figure 1, the encoder is a redesigned ResNet-
like structure that consists of an embedding layer, two resid-
ual blocks for multi-level feature extraction, and a convolution
layer for adapting low-level feature sizes to high-level features.
Each convolution block contains three operations: convolution,
batch normalization [35] and GELU [36] activation. We use an
additive operation to fuse different level features.

3.2.2. Dynamic multi-scale hierarchical decoder expansion
As shown in Figure 1, our decoder also uses a lightweight

multi-scale hierarchical convolutional module for specific
tasks. To accommodate the growth of tasks, our idea is to ex-
pand the parameter space by creating a new decoder while keep-
ing the previous task decoder. Thus, after training t tasks, we

have t task-specific decoders (θi f or i ∈ {1. . . t}). Given an
image x, belonging to any of the seen tasks {1. . . t}, our model
first processes it through the shared encoder to get the hidden
variables h. Then the h is passed to each decoder to obtain the
task-specific embedding ei.

We expect the task-specific decoders can not only predict the
current task data with low entropy but also make high-entropy
predictions on other task data. For example, if a natural image
containing a bird is fed into a cat/dog decoder, the model should
produce an uncertain result. Specifically, we design a task en-
tropy module to formulate the uncertainty u of the model:

µ =
−
∑C

i=1 pilog(pi)
log(C)

(2)

Here, pi is the probability of the i-th dimension, and C is the
class number for a given task. We multiply the output of each
model by its uncertainty score and then concatenate all embed-
dings together into one classifier.

out = concat([e1 · µ1, e2 · µ2, ..., et · µt]) (3)

3.3. Two-stage Training Pipeline for EPIE-Net

As shown in Figure 3, EPIE-Net decouples the incremental
training process into two sequential stages. In the first training
stage, we expand a lightweight decoder to learn new classes
using a mixed-label uncertainty learning method. And then, we
finetune all decoders with class-balanced memory data for the
second training stage.

4

Mixed-label

Data

Augmentation

Encoder Task t decoder

Task t-1 decoder

initialize

Stage1 Dynamic Decoder Expansion

Current Task Dataset

Mixed-label

Data

Augmentation

Encoder

Task t-1 decoder

Task 1 decoderStage2 Class-Balanced Finetuning Training Stages

Task t decoder

......Memory Dataset

backpropagation

backpropagation

Figure 3: Two-stage Training Pipeline for EPIE-Net. We first fix the learned encoder and expand a lightweight decoder to learn new classes at stage one training.
For the second stage of training, we concatenate the output layers of all task-specific decoders as a long embedding vector and then finetune EPIE-Net with memory
data Mt .

3.3.1. Mixed-label Uncertainty Learning for Dynamic Decoder
Expansion

At any t training step, we first fix the learned encoder and
task-specific decoders in previous training phases and then ex-
pand a lightweight decoder to learn new classes. However,
training the task-specific decoder may cause bias. Thus, we
propose a mixed-label uncertainty learning method to improve
the robustness of the task-specific decoder.

Following [37, 33], we use the Monte-Carlo (MC) method to
approximate the uncertainty of the distribution p(y = c|x).

p(y = c|x) =

∫
p(y = x|x̃i)

≈
1
m

m∑
y=1

p(t = c|x̃i), x̃ ∼ aug(x)
(4)

where x̃ denote an augmented sample of x. By default, the hy-
perparameter m is set to 2.

Unlike the simple augmentation method such as rotation and
scaling. Our mixed-label data augmentation pipeline, as shown
in Figure 2, consists of three consecutive steps. Firstly, one
batch images are expanded into m augmented batches by gen-
eral data augmentation such as simple rotation, translation, flip-
ping, and scaling. Then a global mixing technique MixUp [26]
is used for mixing m augmented batches and their labels by
linear-interpolation, respectively. Finally, a local mixing tech-
nique CutMix [28] is further to process the result of global mix-
ing by replacing the mixed image region with a patch from an-
other mixed image.

MixUp is a global mixed-label method for generating new
vicinity samples by computing the convex combination of two

images of different classes. For a pair of two samples and their
labels probabilities (xi; pi) and (x j; p j), we calculate (x′; p′) by

λ ∼ Beta(α, α),
x′ = λxi + (1 − λ)x j,

p′ = λpi + (1 − λ)p j.

(5)

where λ is sampled from a Beta distribution parameterized by
the α hyper-parameter.

Different from MixUp, CutMix combines two images by lo-
cally replacing the image region with a patch from another
training image. We define the combining operation as

x̃ = M � x′i + (1 − M) � x′j,

p̃ = λp′i + (1 − λ)p′j,
(6)

where M ∈ [0, 1]W×H denotes the randomly selected pixel re-
gion for the image x′i and fill in x′j, 1 is a binary mask filled with
ones, and � is element-wise multiplication. To be specific, we
sample the bounding box coordinates B = (rx, ry, rw, rh) indi-
cating the cropping regions on x′i and x′j. The box coordinates
are uniformly sampled according to

rx ∼ Uni f orm(0,W), rw = W
√

1 − λ

ry ∼ Uni f orm(0,H), rh = H
√

1 − λ
(7)

where λ is also sampled from the Beta distribution Beta(α, α).
After constructing the augmented data pair (x̃; p̃), we calculate
the mixed-label uncertainty cross-entropy loss:

£ = −
1

N × m

N∑
n=1

m∑
i=1

p̃n
i log(f (x̃n

i)) (8)

5

Algorithm 1 Learning algorithm of EPIE-Net
Input: current task dataset D = {(xi, yi}

N
i=1, rehearsal data M,

encoder, previous decoders = {decoderi, ..., decodert−1},
perburtation times k, epoch1, epoch2.

Output: encoder and decoders of EPIE-Net
1: decodert ← initialize a decoder for current task t
2: for i in epoch1 do // new decoder training stage
3: (x, y)← sample a batch from dataset D.
4: [(x′1, y

′
1)..., (x′k, y

′
k)]← Augment (x, y) k times.

5: [feat1, ..., featk]← encoder([x′1, ..., x
′
k])

6: [p1, ...,pk]← decodert([feat1, ..., featk])
7: loss← £([p1, ...,pk], [y′1, ..., y

′
k])

8: Update decodert through gradient descent
9: end for

10: decoders.append(decodert) // Adds the decodert to the
previous decoders set.

11: for i in epoch2 do // class-balanced finetuning stage
12: (x, y)← sample a class-balanced batch from M.
13: [(x′1, y

′
1)..., (x′k, y

′
k)]← Augment (x, y) k times.

14: [feat1, ..., featk]← encoder([x′1, ..., x
′
k])

15: for decoder in decoders do
16: [em1, ..., emk]← decoder([feat1, ..., featk])
17: outList.append([em1, ..., emk])
18: end for
19: [out1, ..., outt]← concatenate outList to long vector
20: loss← £([out1, ..., outt], [y′1, ..., y

′
k])

21: Update encoder and decoders through gradient descent
22: end for
23: return encoder and decoders of EPIE-Net

where m, N, f (·) and p̃ denote augmented number, batch size,
predicted probability and label mixing probabilities of sample
x, respectively.

3.3.2. Class-Balanced Finetuning Training Stages
After the newly expanded decoder is trained, the next ques-

tion is how to combine all task-specific decoders to recognize
all seen classes? Unlike previous works [8] that fix extrac-
tors and retrain a classifier, we concatenate the output layers of
all task-specific decoders as a long embedding vector and fine-
tune EPIE-Net with memory data Mt. Note that previous work
[5, 13, 38] has shown that the imbalance between new tasks and
memory data significantly affects the performance of continual
learning. We thus design a simple new-old class rebalancing
sampling strategy to train the merged network. Assuming that
a constant number of U classes are observed in each task, we
rebalance current and rehearsal data in each sampling batch:

br = B ×
∑T−1

t=1 Ut∑T
t=1 Ut

bc = B − br

(9)

where Ut, B, br, and bc denote the classes number of t-th task,
batch size hyperparameter, rehearsal batch, and current batch,
respectively. Note that Mt is just randomly selected from the
previous data stream. Unlike the previous memory strategies

saving fixed “key” data in memory, we found that the well-
designed fixed data could lead to overfitting, so we randomly
selected class-balanced data into the memory buffer.

Mean Perturbation Inference. Typically, data augmenta-
tion techniques are removed during the inference phase to re-
duce noise in model predictions. However, we find that the aug-
mented data can amplify the uncertainty of decoders for non-
corresponding tasks. Therefore, we calculate the mean proba-
bility of perturbed samples at the inference phase:

pmean =
1
m

m∑
i=1

p(x̃i), x̃ ∼ aug(x) (10)

where x̃ denote a perturbed sample that is rotated, translated,
and scaled from the original x. By default, the hyperparameter
m is set to 2.

4. Experiments

4.1. Implementation Details

In this section, we compare EPIE-Net with several state-of-
the-art methods in various CIL experimental setups. We also
conducted a series of ablation studies to more fully assess the
importance of each component of EPIE-Net.

Experimental setup. Our experiments are mainly carried
out as CIL and blurry-CIL setups. In the CIL experiments, we
follow Rebuffi et al. [3] evaluation protocols that split dataset
evenly in different increments, and the learned classes do not
appear in subsequent learning (unless it is in the memory). In
the blurry-CIL experiments, following Bang et al. [33], the ar-
rived data are composed of the majority of new classes and mi-
nor seen classes. We denote blurry-CIL setup as ‘BlurryM’
where the M denotes the portion of the previous classes (i.e.,
Blurry10 means that 90% of the coming data are new classes,
and the remaining 10% are known). In addition, we also con-
sider online and offline setups. In offline setups, the incoming
samples can be trained multiple epochs until the model con-
verges. However, online setups require that samples are trained
only once.

Evaluation Metrics. For the evaluation method, we use
three popular metrics in the literature, such as last accuracy,
last forgetting and average incremental accuracy Ā. following
Rebuffi et al. [3], Ā is defined as:

Ā =
1
T

T∑
i=1

āi (11)

where āi is the average accuracy on dataset Dtest
1:i when the

model learned task i.
Dataset. We use CIFAR10/100 [41] and ImageNet-Sub

[3] datasets to configure CIL setups for evaluations. We ran-
domly split and assign with different random seeds a set of all
classes into n tasks to generate CIL task setup. Following [3],
ImageNet-sub datasets are randomly 100 classes sampled from
ImageNet [42] with an identical random seed (1993).

6

0 10 20 30 40 50 60 70 80 90 100
40

50

60

70

80

90

100
CIFAR100 10 steps

To
p-

1
A

cc
ur

ac
y

(%
)

Number of seen classes

 EPIE-Net DyTox DER DER w/o P WA BiC
 UCIR PODNet iCaRL RPSNet Upperbound

0 10 20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

100
CIFAR100 50 steps

To
p-

1
A

cc
ur

ac
y

(%
)

Number of seen classes
0 10 20 30 40 50 60 70 80 90 100

30

40

50

60

70

80

90

100
CIFAR100 20 steps

To
p-

1
A

cc
ur

ac
y

(%
)

Number of seen classes

Figure 4: Experimental results of class-incremental training at each step on CIFAR-100. We report top-1 accuracy (%) after learning each step. Left is evaluated
with 10 steps, middle with 20 steps, and right with 50 steps.

10 steps 20 steps 50 steps
methods #Paras Avg Acc Last Acc #Paras Avg Acc Last Acc #Paras Avg Acc Last Acc
Joint 11.22 - 80.41 11.22 - 81.49 11.22 - 81.74
iCaRL [3] 11.22 65.27±1.02 50.74 11.22 61.20 ±0.83 43.75 11.22 56.08±0.83 36.62
UCIR [13] 11.22 58.66±0.71 43.39 11.22 58.17±0.30 40.63 11.22 56.86±0.83 37.09
BiC [5] 11.22 68.80±1.20 53.54 11.22 66.48±0.32 47.02 11.22 62.09±0.85 41.04
WA [39] 11.22 69.46±0.29 53.78 11.22 67.33±0.15 47.31 11.22 64.32±0.28 42.14
PODNet [40] 11.22 58.03±1.27 41.05 11.22 53.97±0.85 35.02 11.22 51.19±1.02 32.99
RPSNet [11] 56.5 68.6 57.05 - - - - - -

DER w/o P [8]
last 112.2
avg 61.6 75.36±0.36 65.22

last 224.5
avg 117.6 74.09±0.33 62.48

last 561.3
avg 285.6 72.41±0.36 59.08

DER† [8] avg 4.96 74.64±0.28 64.35 avg 7.21 73.98±0.36 62.55 avg 10.15 72.05±0.55 59.76
DyTox [21] last 10.73 73.66±0.02 60.67±0.34 last 10.74 72.27±0.18 56.32±0.61 last 10.77 70.2±0.16 52.34±0.26

EPIE-Net(ours) last 5.16
avg 3.46 76.33±0.31 65.93±0.26

last 5.91
avg 3.78 72.35±0.28 61.69±0.35

last 7.04
avg 4.18 70.68±0.33 60.23±0.37

Table 1: Results on CIFAR100 benchmark. All results are averaged over three runs. Avg Acc means the average incremental accuracy (%). Note that baselines
results come from [21, 8]. DER† [8] means require setting-sensitive pruning operation.

Implementation details. For each task, we use Adam [43]
optimizer to train the model with batch size 256, weight de-
cay 0.0001, and 200 epochs. The learning rate starts from
0.001 and decays by cosine annealing scheduler [44]. Note that
our approach requires different learning rates in two sequential
stages: in the decoder expansion stage, the learning rate starts
from 0.001, while in the class-balanced fine-tuning stage, the
initial learning rate is 0.0005 × 0.9i and decays with cosine an-
nealing scheduler, here i is the current task number. Following
[3, 8, 21], the memory buffer of CIFAR100 and ImageNet-100
are both K = 2000.

4.2. Results on Offline CIL

In this part of the experiments, we address the offline CIL
setup where labels at all phases do not intersect, and the model
can be trained multiple epochs until it converges. We exten-
sively compare the proposed technique with existing state-of-

the-art methods, including iCaRL [3], UCIR [13], BiC [5], WA
[39], POD-Net [40], RPS-Net [11], DER [8] and DyTox [21].

Evaluation on CIFAR100. Table 3.3.2 summarizes the ex-
perimental results on CIFAR100 for all approaches. DER w/o
P means the DER without pruning, and DER† is to set sen-
sitive hyperparameters to prune. #Paras (counted by million)
means the average parameters overhead during inference over
steps. Note that the parameter overhead of DyTox was re-
ported as the final parameters count, and we likewise report it
for a fair comparison with DyTox. We can see that EPIE-Net
consistently has minimal parameter overhead at different incre-
mental splits. Compared to the pruned DER†, EPIE-Net does
not require setting-sensitive pruning operation, which can save
much training time and is more suitable for practical applica-
tion. Specifically, for the difficult 50 steps setup, our method
reaches 70.68% in “Avg” accuracy and 60.23% in “Last” ac-
curacy within 7.04M parameters. This outperforms the previ-

7

ImageNet100-B0 ImageNet100-B50

#Paras top-1 top-5 #Paras top-1
Methods Avg Acc Last Acc Avg Acc Last Acc Avg Acc Last Acc
ResNet18 joint 11.22 - - - 95.1 11.22 81.2 81.5
E2E [38] 11.22 - - 89.92 80.29 - - -
WA [39] 11.22 - - 91 84.1 - - -
UCIR [13] - - - - - 11.22 68.32 57.3
iCaRL [3] 11.22 - - 83.6 63.8 11.22 59.88 50.3
BiC [5] 11.22 - - 90.6 84.4 11.22 64.96 56.7
DER w/o P [8] 61.6 77.18 66.7 93.23 87.52 67.20 78.20 74.92
DER [8] 7.67 76.12 66.06 92.79 88.38 8.87 77.73 72.06
DyTox [21] 11.01 76.53 67.76 92.26 88.5 - - -
EPIE-Net(ours) 6.72 79.55 68.55 93.43 88.64 6.72 79.52 75.66

Table 2: Results on ImageNet100 benchmark. Avg Acc means the average incremental accuracy (%). Note that ImageNet100-B0 protocol [3] means training the
model from scratch with 10 steps, and the ImageNet100-B50 [13] means starting from a model trained on 50 classes, and the remaining 50 classes come in 10 steps.

ous state-of-the-art DyTox (70.2% in “Avg”, 52.34% in “Last”)
which has 10.77M parameters. Moreover, although DER w/o
P reaches a higher average accuracy (72.41%), its need for
561.3M parameters is too inefficient. Since UCIR, iCaRL, and
BiC adopt static network design, the parameters used to identify
old classes are forced to be overwritten to learn new classes, so
their overall performance deteriorates rapidly, while EPIE-Net
protects learned knowledge by isolating the parameters of pre-
vious task decoders. Figure 4 shows the detailed performance
for each step with different incremental steps. All models de-
grade as the number of learned classes increases, but EPIE-Net
maintains a high performance after learning long steps, and the
decline slope is lower than other models.

Evaluation on ImageNet100. Table 1 summarizes the ex-
perimental results for all approaches on ImageNet100 datasets.
ImageNet100-B0 protocol [3] means training the model from
scratch with 10 steps, and the ImageNet100-B50 [13] means
starting from a model trained on 50 classes, and the remaining
50 classes come in 10 steps. Following [8], we compare the av-
erage accuracy and last accuracy of Top-1 and Top-5. However,
since few works have reported the performance of Top5 in the
ImageNetB50 setting, we remove the relevant comparison. We
can see that our method consistently outperforms other methods
with minimal parameter overhead.

4.3. Results on Online Blurry-CIL

In this part of the experiments, we address a realistic and real-
world online blurry-CIL setup where tasks share the classes,
and samples are trained only once. Following [33], we compare
the proposed EPIE-Net with RM [33], Rwalk [45], iCaRL [3],
GDumb [34] and BiC [5]. To adapt the online blurry-CIL setup,
we firstly train task-specific decoders offline for new classes and
then adds them to EPIE-Net for online learning.

Table 3 summarizes the ‘Blurry10-Online’ setup results on
the CIFAR10 and CIFAR100 datasets. Following [33], we split
each dataset into 5 steps, and in each step, 90% of the coming
data are new classes and the remaining 10% are known. We
use Last Accuracy and Last Forgetting metrics to compare the

models. Since we use different decoders for each task, EPIE-
Net preserves learned knowledge more effectively than RM on
the Online Blurry-CIL setting. We can observe that EPIE-Net
outperforms other methods even with fewer parameters. Specif-
ically, under the CIAR100 online setups, EPE-Net can achieve
60.31% accuracy, which surpasses the state-of-the-art RW by
8.94% last accuracy.

4.4. Ablation Studies and Analysis
To further analyze the mechanism of EPIE-Net, a large num-

ber of ablation experiments are performed in this section to
evaluate the contribution of each component of EPIE-Net more
comprehensively.

The effect of reserved exemplars. It has been proven that
pre-reserved exemplars are useful in maintaining the perfor-
mance of old classes [13, 3]. We use the mixed-label uncer-
tainty learning strategy to improve the generalization perfor-
mance of representations so that EPIE-Net can reduce the re-
quirement of rehearsal samples compared with other continual
learning models. Figure 5 illustrates the effect of EPIE-Net on
different reserved exemplars. Both methods have improved per-
formance as the number of reserved exemplars increases, and
EPIE-Net can achieve high performance with fewer exemplars.
In particular, EPIE-Net merely uses 100 exemplars (1 exem-
plar per class), and the average incremental accuracy reaches
63.89%, which exceeds the 68.33% achieved by the iCaRL with
2000 exemplars.

The effect of model size. The trade-off between performance
and parameter capacity for dynamically growing networks is a
dilemma. Thanks to the proposed efficient task decoder mod-
ule, EPIE-Net only needs to grow 0.1M parameters per task
(CIFAR-100 with 10 class increments). As shown in Figure 6,
We conduct experiments to study the effect of model size on
performance. Our method can achieve high performance with
only a small number of parameters. Specifically, RPS requires
56.5M parameters to achieve an average incremental accuracy
of 68.6%, while our model requires only 2.04M parameters to
achieve an accuracy of 73.2%. In the case of unrestricted pa-
rameters, DER without pruning requires 64M average parame-

8

CIFAR10 (K=500) CIFAR100 (K=2000)

#Parms Online #Parms Online
Methods Last Accuracy(↑) Last Forgetting(↓) Last Accuracy(↑) Last Forgetting(↓)

EWC 11.2 55.65±4.60 16.06±3.89 22.4 26.95±0.36 11.47±1.26

Rwalk 11.2 53.66±3.18 17.04±0.31 22.4 32.31±0.78 15.57±2.17

iCaRL 11.2 45.98±3.04 4.75±1.70 22.4 17.39±1.04 5.38±0.88

GDumb 11.2 49.47±1.08 1.44±2.77 22.4 27.19±0.65 7.49±0.88

BiC 11.2 42.06±2.41 1.34±2.27 22.4 13.01±0.24 4.63±0.46

RM 11.2 71.13±0.25 -0.85±0.28 22.4 41.35±0.95 4.99±0.89

EPIE-Net (ours) 4.11 72.11±0.15 0.76±0.12 4.11 60.31±0.55 2.45±0.67

Table 3: Blurry10-Online setup results on the CIFAR10 and CIFAR100 datasets. Following [33], we split the dataset into 5 steps and then compare the model last
accuracy (%) and last forgetting (%). Note that baselines results come from [33].

63.89

68.33
70.76

76.18

51.44

55.34

58.56

62.58

0 200 400 600 800 1000 1200 1400 1600 1800 2000
45

50

55

60

65

70

75

80

A
ve

ra
ge

 In
cr

em
en

ta
l A

cc
ur

ac
ie

s (
%

)

Number of Exemplars

 EPIE-Net
 iCaRL

Figure 5: Ablation analysis on CIFAR-100 with 10 class increments for differ-
ent exemplars.

ters to achieve 75.36% accuracy, but EPIE-Net only needs 34M
parameters to reach 76.77% high performance.

The effect of each component. EPIE-Net contains three
important components:(1) Label-mixed Uncertainty Learning,
(2) Perturbation Inference, and (3) Class-Balanced Finetuning.
Table 4 summarizes the ablation results of EPIE-Net on CI-
FAR100 10 steps. Note that the without Class-Balance Fine-
tuning setting means EPIE-Net directly merges the trained task-
decoder module for prediction, so no reserved exemplars data is
used in this setting. We can see that all three greatly improve the
baseline method (55.44%→ 76.33%). Analyzing each compo-
nent individually, Class-Balanced Finetuning based on reserved
exemplars is crucial, which improves performance by an aver-
age of 12.22% (59.83% → 72.05%). Moreover, Perturbation
Inference can be used as a plug-and-play module, improving
the base model by 4.81% (57.94%→ 62.05%).

Exemplars overfitting for long-term continual learning.
Reserved samples can effectively alleviate catastrophic forget-
ting, but in the case of long-term continual learning, repeated
training of reserved data will also cause overfitting. We com-

0 10 20 30 40 50 60

66

68

70

72

74

76

78

 RPS
 DER
 EPIE-Net

A
ve

ra
ge

 In
cr

em
en

ta
l A

cc
ur

ac
ie

s (
%

)

#Parameters (Millions)

2.04M

0.54M

4.9 M

3.46M 32.7M

55M

13.7M

Figure 6: Ablation analysis on CIFAR-100 with 10 classes increments for dif-
ferent model size.

Label-mixed
Uncertainty Learning

Perturbation
Inference

Class-Balanced
Finetuning Avg

× × × 55.44
X × × 56.71
× X × 59.23
X X × 63.55
× × X 61.67
X × X 74.36
× X X 65.48
X X X 76.33

Table 4: Ablations of the different key components of our EPIE-Net architec-
ture. We report the average incremental accuracies (%) on CIFAR100 with 10
classes per-task.

9

0 10 20 30 40 50 60 70 80 90 100
40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Number of classes

 step10-resampling
 step10-fixed
 step20-resampling
 step20-fixed
 step50-resampling
 step50-fixed

Figure 7: Exemplars overfitting for long-term continual learning on CIFAR100
dataset. We compare the effect of fixed reserved exemplars and resampling
rehearsal exemplars under different increment steps.

m 0 1 2 3 4 10
Avg 74.36 74.63 76.33 76.55 76.79 77.11

Table 5: Average incremental accuracy on CIFAR100 with 10 steps for different
perturbation numbers m.

pare the performance of fixed reserved exemplars and resam-
pling rehearsal exemplars under different increment steps. As
shown in Figure 7, the solid line represents the resampling re-
hearsal, and the dashed line represents the fixed reserved exem-
plars. We can see that the performance of the two strategies is
similar in the early steps. However, the performance of the fixed
reserved method drops significantly as the training progresses.

The effect of perturbation number. As shown in Table 5,
we conduct a sensitive study of different perturbation inference
numbers m on CIFAR100 10 tasks split. Note that m = 0 means
standard inference, m = 1 means using data augmentation tech-
niques in the test data, and m > 2 means calculating the mean
probability of perturbed samples. We can see that the higher the
value of m, the higher the performance, but when m is greater
than 2, its performance improvement is slight. Considering the
impact of computing resources, in the default case is recom-
mended to use m = 2.

The effect of learning rate on finetuning stage. As shown
in Table 6, we conduct a sensitive study of different learning
rate on CIFAR100 10 tasks split. We can see that, in the class-
balanced training stage, the initial learning rates of 0.001 and
0.0005 differ by 2.98% and 7.62% in average and final accu-
racy, respectively. We, therefore, use an initial learning rate that
decays by task and finetune the model with a lower learning rate
as tasks increase.

fixed lr 0.001 fixed lr 0.0005 decay lr 0.0005 × 0.9i

avg last avg last avg last
71.64 56.43 74.62 64.05 76.33 65.93

Table 6: The effect of learning rate on class-balanced finetuning training stage.
We report the average incremental accuracies (%) and Last accuracies (%) on
CIFAR100 with 10 classes per-task.

5. Conclusions and future work

In this work, we aim to design a more efficiently expandable
architecture for class-incremental learning. The proposed Ef-
ficient Perturbation Inference and Expandable Network (EPIE-
Net) has two key novelties: (1) the proposed lightweight multi-
scale hierarchical encoder/decoder architecture can achieve effi-
cient growth for continual learning. (2) mixed-label uncertainty
learning strategies can effectively improve the robustness of the
model in continual learning scenarios. The experimental results
show that our method consistently outperforms other methods
with fewer parameter overhead.

In future work, we will improve our framework from two
aspects. First, the encoder of EPIE-Net would suffer from the
feature shift phenomenon under long-term continual learning,
so our framework has to rely on a class-balanced fine-tuning
strategy to mitigate this phenomenon. However, continual fine-
tuning will also cause overfitting of rehearsal data. Next, we
will introduce contrastive learning to improve the generaliza-
tion of the encoder. Second, our framework uses a lightweight
decoder to expand new task branches, and we will delve into the
relationships among task branches to improve their reusability.

Declaration of competing interest

The authors declare that they have no known competing fi-
nancial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

Acknowledgments

The authors would like to acknowledge the financial sup-
port provided by the Postgraduate Research and Innovation
Foundation of Yunnan University with No.2021Z113, Yunnan
provincial major science and technology special plan projects:
digitization research and application demonstration of Yunnan
characteristic industry under Grant: No. 202002AD080001,
The Natural Science Foundation of China (NSFC) under
Grant: No. 61876166, and Yunnan Basic Research Pro-
gram for Distinguished Young Youths Project, under Grant:
202101AV070003.

References

[1] M. McCloskey, N. J. Cohen, Catastrophic interference in connectionist
networks: The sequential learning problem, in: Psychology of learning
and motivation, volume 24, Elsevier, 1989, pp. 109–165.

[2] R. Caruana, Multitask learning, Machine learning 28 (1997) 41–75.

10

[3] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, C. H. Lampert, icarl: Incremental
classifier and representation learning, in: Proceedings of the IEEE confer-
ence on Computer Vision and Pattern Recognition, 2017, pp. 2001–2010.

[4] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.
Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al.,
Overcoming catastrophic forgetting in neural networks, Proceedings of
the national academy of sciences 114 (2017) 3521–3526.

[5] Y. Wu, Y. Chen, L. Wang, Y. Ye, Z. Liu, Y. Guo, Y. Fu, Large scale
incremental learning, in: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2019, pp. 374–382.

[6] Z. Li, D. Hoiem, Learning without forgetting, IEEE transactions on
pattern analysis and machine intelligence 40 (2017) 2935–2947.

[7] R. Aljundi, P. Chakravarty, T. Tuytelaars, Expert gate: Lifelong learning
with a network of experts, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017, pp. 3366–3375.

[8] S. Yan, J. Xie, X. He, Der: Dynamically expandable representation for
class incremental learning, in: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2021, pp. 3014–3023.

[9] H. Shin, J. K. Lee, J. Kim, J. Kim, Continual learning with deep gen-
erative replay, Advances in neural information processing systems 30
(2017).

[10] D. Lopez-Paz, M. Ranzato, Gradient episodic memory for continual
learning, Advances in neural information processing systems 30 (2017).

[11] J. Rajasegaran, M. Hayat, S. Khan, F. S. Khan, L. Shao, Random path
selection for incremental learning, Advances in Neural Information Pro-
cessing Systems (2019).

[12] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,
K. Kavukcuoglu, R. Pascanu, R. Hadsell, Progressive neural networks,
arXiv preprint arXiv:1606.04671 (2016).

[13] S. Hou, X. Pan, C. C. Loy, Z. Wang, D. Lin, Learning a unified classifier
incrementally via rebalancing, in: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, 2019, pp. 831–839.

[14] Z. Li, C. Zhong, S. Liu, R. Wang, W.-S. Zheng, Preserving earlier knowl-
edge in continual learning with the help of all previous feature extractors,
arXiv preprint arXiv:2104.13614 (2021).

[15] S. Golkar, M. Kagan, K. Cho, Continual learning via neural pruning,
arXiv preprint arXiv:1903.04476 (2019).

[16] C.-Y. Hung, C.-H. Tu, C.-E. Wu, C.-H. Chen, Y.-M. Chan, C.-S. Chen,
Compacting, picking and growing for unforgetting continual learning,
Advances in Neural Information Processing Systems 32 (2019).

[17] A. Mallya, S. Lazebnik, Packnet: Adding multiple tasks to a single net-
work by iterative pruning, in: Proceedings of the IEEE conference on
Computer Vision and Pattern Recognition, 2018, pp. 7765–7773.

[18] Y. Yang, Y. Hu, X. Zhang, S. Wang, Two-stage selective ensemble of cnn
via deep tree training for medical image classification, IEEE Transactions
on Cybernetics (2021).

[19] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, C. Zhang, Learning efficient
convolutional networks through network slimming, in: Proceedings of
the IEEE international conference on computer vision, 2017, pp. 2736–
2744.

[20] G. Hinton, O. Vinyals, J. Dean, et al., Distilling the knowledge in a neural
network, arXiv preprint arXiv:1503.02531 2 (2015).

[21] A. Douillard, A. Ramé, G. Couairon, M. Cord, Dytox: Transformers
for continual learning with dynamic token expansion, arXiv preprint
arXiv:2111.11326 (2021).

[22] Y. Yang, J. Jiang, Adaptive bi-weighting toward automatic initialization
and model selection for hmm-based hybrid meta-clustering ensembles,
IEEE transactions on cybernetics 49 (2018) 1657–1668.

[23] Y. Yang, J. Jiang, Hybrid sampling-based clustering ensemble with global
and local constitutions, IEEE transactions on neural networks and learn-
ing systems 27 (2015) 952–965.

[24] J. Kim, J. Kim, N. Kwak, Stacknet: Stacking feature maps for continual
learning, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops, 2020, pp. 242–243.

[25] C. Fernando, D. Banarse, C. Blundell, Y. Zwols, D. Ha, A. A. Rusu,
A. Pritzel, D. Wierstra, Pathnet: Evolution channels gradient descent
in super neural networks, arXiv preprint arXiv:1701.08734 (2017).

[26] H. Zhang, M. Cisse, Y. N. Dauphin, D. Lopez-Paz, mixup: Beyond em-
pirical risk minimization, arXiv preprint arXiv:1710.09412 (2017).

[27] V. Verma, A. Lamb, C. Beckham, A. Najafi, I. Mitliagkas, D. Lopez-
Paz, Y. Bengio, Manifold mixup: Better representations by interpolating

hidden states, in: International Conference on Machine Learning, PMLR,
2019, pp. 6438–6447.

[28] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, Y. Yoo, Cutmix: Regular-
ization strategy to train strong classifiers with localizable features, in:
Proceedings of the IEEE/CVF international conference on computer vi-
sion, 2019, pp. 6023–6032.

[29] Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. Weinzaepfel, D. Larlus, Hard
negative mixing for contrastive learning, Advances in Neural Information
Processing Systems 33 (2020) 21798–21809.

[30] S. Kim, G. Lee, S. Bae, S.-Y. Yun, Mixco: Mix-up contrastive learning
for visual representation, arXiv preprint arXiv:2010.06300 (2020).

[31] Z. Shen, Z. Liu, Z. Liu, M. Savvides, T. Darrell, E. Xing, Un-mix: Re-
thinking image mixtures for unsupervised visual representation learning,
arXiv preprint arXiv:2003.05438 (2020).

[32] V. Verma, T. Luong, K. Kawaguchi, H. Pham, Q. Le, Towards domain-
agnostic contrastive learning, in: International Conference on Machine
Learning, PMLR, 2021, pp. 10530–10541.

[33] J. Bang, H. Kim, Y. Yoo, J.-W. Ha, J. Choi, Rainbow memory: Con-
tinual learning with a memory of diverse samples, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 8218–8227.

[34] A. Prabhu, P. H. Torr, P. K. Dokania, Gdumb: A simple approach that
questions our progress in continual learning, in: European conference on
computer vision, Springer, 2020, pp. 524–540.

[35] S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network
training by reducing internal covariate shift, in: International conference
on machine learning, PMLR, 2015, pp. 448–456.

[36] D. Hendrycks, K. Gimpel, Gaussian error linear units (gelus), arXiv
preprint arXiv:1606.08415 (2016).

[37] Y. Gal, Z. Ghahramani, Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning, in: international conference
on machine learning, PMLR, 2016, pp. 1050–1059.

[38] F. M. Castro, M. J. Marı́n-Jiménez, N. Guil, C. Schmid, K. Alahari, End-
to-end incremental learning, in: Proceedings of the European conference
on computer vision (ECCV), 2018, pp. 233–248.

[39] B. Zhao, X. Xiao, G. Gan, B. Zhang, S.-T. Xia, Maintaining discrim-
ination and fairness in class incremental learning, in: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 13208–13217.

[40] A. Douillard, M. Cord, C. Ollion, T. Robert, E. Valle, Podnet: Pooled
outputs distillation for small-tasks incremental learning, in: European
Conference on Computer Vision, Springer, 2020, pp. 86–102.

[41] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features
from tiny images (2009).

[42] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, et al., Imagenet large scale vi-
sual recognition challenge, International journal of computer vision 115
(2015) 211–252.

[43] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv
preprint arXiv:1412.6980 (2014).

[44] I. Loshchilov, F. Hutter, Sgdr: Stochastic gradient descent with warm
restarts, arXiv preprint arXiv:1608.03983 (2016).

[45] A. Chaudhry, P. K. Dokania, T. Ajanthan, P. H. Torr, Riemannian walk
for incremental learning: Understanding forgetting and intransigence, in:
Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 532–547.

11

