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Abstract 13 

New rechargeable batteries with high energy density and low cost have been intensively 14 

explored, but their commercialization still faces multiple challenges involving battery 15 

materials and interfaces. Some difficulties faced by battery materials are that a single 16 

material often needs to possess multiple functions, and also needs to be cheap, easy to 17 

prepare, safe and environmentally friendly. Recent developments in workflow 18 

managers (WMs) along with continuously increasing computing power have enabled 19 

the automated computational workflow method. Using this method, the WM can 20 

execute the predesigned research workflow to study tens of thousands of materials and 21 

screen out materials that meet the multiple requirements. In this perspective, we will 22 

present a critical overview of the automated computational workflows, focusing on the 23 

high-throughput study of battery materials. Firstly, an introduction to the automated 24 

computational workflow as well as commonly used WMs will be given. Next, the latest 25 

works and methods to build such automated workflows are presented. Finally, we 26 

provide an outlook on the existing challenges and future directions to drive 27 

computational and experimental developments in this nascent field.28 



 

 

Introduction 1 

The quest towards a sustainable energy future based on intermittent renewable energy 2 

warrants the need for efficient energy storage technologies.[1] Rechargeable batteries 3 

have the ability to store excess renewable energy and release it on demand to ensure a 4 

constant power supply. Lithium-ion batteries (LIBs) are the mainstream technology 5 

today for portable electronics, electric vehicles and grid storage owing to their 6 

reasonable energy density and cycle life.[2,3] Over the years, technologies beyond LIBs 7 

with higher energy density and lower cost have been intensively explored, but many 8 

are yet to be commercialized due to multiple challenges involving battery materials and 9 

interfaces.[4-6] Besides the anode, cathode and electrolyte materials, battery interfaces 10 

such as the anode-electrolyte and cathode-electrolyte interfaces are also equally 11 

important in determining the overall battery performance. 12 

 13 

Why is the commercialization of new type of batteries so difficult? One of the main 14 

reasons may be that a single battery material often needs to achieve multiple functions 15 

at the same time.[7-15] As a typical example, lithium-sulfur batteries (LSBs) are still far 16 

from practical applications, even though they have been studied for decades as a 17 

promising candidate for next-generation rechargeable batteries. The main reason is that 18 

the cathode, anode, electrolyte, and the interfaces between them all face multiple 19 

challenges, and it is not easy to find materials that are cheap, simple to prepare, safe 20 

and environmentally friendly to overcome these challenges simultaneously. For 21 

example, the main challenges facing the sulfur cathode include low electronic and ionic 22 

conductivity, solubility of lithium polysulfides (LiPSs) and large volume change.[4,16] 23 

To solve the above-mentioned problems, the key is to find multifunctional sulfur 24 

hosts.[7-10] The lithium anode also faces multiple challenges of lithium dendrite growth 25 

and non-uniform formation of solid electrolyte interphase (SEI).[4,16] The electrolyte is 26 

even more complicated, since it is in contact with both the cathode and the anode. 27 

Although solid-state electrolytes (SSEs) can solve the flammable and volatile safety 28 

hazards of traditional organic liquid electrolytes, suppress the growth of lithium 29 

dendrites and prevent the dissolution of LiPSs, their lithium ion conductivities are often 30 



 

 

several orders of magnitude lower than that of liquid electrolytes.[17,18] Effective SSEs 1 

need to be multifunctional with high lithium ion conductivity, suitable mechanical 2 

strength and large electrochemical window. Finally, the interfaces, as the connecting 3 

part between all battery materials, can be said to have a crucial impact on the overall 4 

performance of the battery. It can be predicted that the challenges faced by the interface 5 

are jointly determined by the two parts it connects, which means that the interfaces also 6 

need to be multifunctional.[14,15] 7 

 8 

In fact, the commercialization of any battery system is bound to have many challenges 9 

due to its unique chemical and electrochemical processes.[19] To overcome these 10 

challenges, each battery material needs to perform multiple tasks. To find effective 11 

battery materials and interfaces, funnel-shaped screening workflow is a main 12 

method.[13,20] However, the application of the screening workflow currently relies 13 

largely on experimental trial-and-error to screen out the best material from a large 14 

number of candidate materials. Experiments are irreplaceable, but they do have 15 

disadvantages of being time-consuming, expensive, and low-throughput for screening. 16 

Compared with experiments, computational simulations are usually less time-17 

consuming, cheaper, and easier to achieve high-throughput. Thus, it may be a more 18 

efficient method to firstly find several optimal materials from a large number of 19 

candidate materials through computational high-throughput screening, and then carry 20 

out experimental verification. Over the years, computer performance has grown rapidly 21 

in accordance with Moore's Law, and many computational material research groups 22 

have been able to perform high-throughput simulations. And the emergence of 23 

workflow managers (WMs) has provided a powerful tool for the above-mentioned 24 

computational high-throughput screening.[21] With the help of WMs, the construction 25 

of the computational screening workflow becomes much easier. The execution of the 26 

workflow becomes more efficient and automated, which requires minimum human 27 

intervention, and the reproducibility of research work is improved. Combining 28 

computational simulations with WMs, we propose a nascent but promising automated 29 

computational workflow method for the study of battery materials. 30 



 

 

 1 

In this perspective, we will present a critical overview of the research in automated 2 

computational workflows with a focus on battery materials. We firstly introduce the 3 

automated computational workflow method and discuss how it works, how to build it, 4 

its advantages as well as commonly used WMs. Next, we will present the research 5 

works using this method in battery materials and some other fields. Finally, we also 6 

offer our perspectives on the unresolved problems and future directions to spur 7 

computational and experimental progress in this emerging field. 8 

 9 

 10 

Figure 1. Automated computational workflow for battery materials discovery. The flow 11 

line represents a funnel-shaped battery material screening workflow, constructed by 12 

researchers using WM. According to the designed workflow, the WM will coordinate 13 

the simulation software, material database, computer cluster, job scheduler, and data 14 

analysis/visualization tools to screen battery materials together. 15 

 16 

Automated computational workflows 17 

The so-called workflow, according to its literal meaning, is the order in which tasks are 18 

performed. Mathematically, a workflow can be described using a directed acyclic graph, 19 

which comprises two basic elements: vertex and edge. A vertex represents a task, and 20 

the direction of the edge connecting two vertices determines the execution order of two 21 

tasks. Judging whether a battery material satisfies the design strategy can be achieved 22 



 

 

through a funnel-shaped screening workflow.[13,20] In such workflow, multiple 1 

properties of a material are simulated. Only if all these properties meet the requirements 2 

can it pass the screening. If a property fails to meet the requirements, this material will 3 

be eliminated immediately (see the flow line in Figure 1). To achieve the highest 4 

efficiency, a funnel-shaped screening workflow should follow a principle: the most 5 

accessible property should be simulated first and vice versa. An effective battery 6 

material has to possess good intrinsic properties, and its microstructure is of equal 7 

importance. For example, in the sulfur cathode of LSBs, the core-shell structure is 8 

adopted to confine S8/Li2S in a conductive shell, which not only can inhibit the 9 

dissolution of LiPSs but also provide space for the volume change.[9,22-24] This means 10 

that the screening of battery materials will involve multi-scale simulations and 11 

corresponding software. The use of different simulation software follows a similar 12 

procedure, including the preparation of input files (e.g. material structures and 13 

simulation parameters), the execution of simulation software on computer clusters as 14 

well as the collection and analysis of results. In a high-throughput screening, the 15 

material structures are usually derived from material databases, and the simulation 16 

parameters are pre-specified by researchers. Since a computer cluster is often used by 17 

many users at the same time, the execution of simulation software on a computer cluster 18 

needs to be applied for and queued through a job scheduler. Finally, the collection and 19 

analysis of results can be realized by data analysis and visualization tools. In conclusion, 20 

a high-throughput screening workflow for battery materials is a combination of the 21 

inspiration of researchers, simulation software at different scales, material databases, 22 

computer clusters, job schedulers and data analysis/visualization tools. Thus, the 23 

manual execution of such high-throughput workflow is impractical. Thanks to the 24 

emergence of WMs, it provides a powerful tool for the construction and execution of 25 

such sophisticated workflow (Figure 1). 26 

 27 

To build a workflow with a WM, firstly we need to analyze and decompose the overall 28 

workflow. Take the funnel-shaped screening workflow as an example. It can be simply 29 

regarded as a series of material property simulation tasks connected in terms of a 30 



 

 

“progressive” logic. However, any property simulation cannot be completed in a single 1 

step, which means a property simulation is also a workflow. Since the property 2 

simulation is a part of the screening, we can call it a first-order sub-workflow of the 3 

screening workflow. In fact, this first-order sub-workflow may also be divided into 4 

many second-order sub-workflows. This decomposition process is repeated, until a 5 

high-order sub-workflow can be completed in a single step (e.g. file reading or writing). 6 

Such high-order sub-workflow can be called an atomic-workflow, indicating its 7 

indivisibility. Theoretically, no matter how complex a workflow is, it can be constructed 8 

by connecting a large number of atomic-workflows in terms of simple logic. But in 9 

practice, workflow construction does not need to be so cumbersome. WMs allow the 10 

encapsulation of commonly used workflows, so that they can be reused. Thus, in the 11 

process of workflow analysis and decomposition, as long as a sub-workflow has already 12 

been encapsulated before, it can be reused directly. In fact, some WMs have 13 

encapsulated a number of commonly used simulation workflows of popular simulation 14 

software, which further simplified the workflow construction. Once a workflow is 15 

constructed, the WMs can automate its execution to screen thousands of materials from 16 

the databases. When the workflow starts, the WMs will analyze the workflow graph, 17 

and submit tasks with no pre-task to the cluster through job schedular. When a task is 18 

completed, the WMs will analyze the graph again, and submit tasks whose pre-tasks 19 

have all completed. The above process is repeated until the workflow ends. The 20 

advantages are as follows: (1) the screening of multiple materials can be performed 21 

simultaneously; (2) the WMs can handle complex dependencies; (3) the WMs can 22 

execute a large number of concurrent tasks in a short period of time; (4) a workflow 23 

can be executed on multiple computer clusters with different job schedulers; (5) the 24 

workflow execution can be recorded in detail for a batter reproducibility; (6) excellent 25 

commonly used workflows can be encapsulated and shared, which can be reused 26 

directly by other researchers or be used as sub-workflows for the construction of more 27 

advanced workflows. 28 

 29 

At present, the commonly used WMs include Automate,[25] AiiDA,[26,27] AFLOW,[28,29] 30 



 

 

MyQueue,[30] Pipeline Pilot, etc. Automate (https://atomate.org) is based on open-1 

source Python libraries pymatgen,[31] FireWorks,[32] and custodian. The Materials 2 

Project[33] database is powered by Automate. Automate not only can be used as a 3 

language to define dynamic workflows, but also provides many commonly used 4 

workflows such as the electronic band structure, elastic tensor and climbing-image 5 

nudged elastic band (CI-NEB) workflows. AiiDA (https://www.aiida.net) is an open-6 

source WM written in Python. AiiDA can define dynamic workflows and the AiiDA 7 

engine owns the ability on sustaining high-throughput workloads involving tens of 8 

thousands of concurrent jobs per hour. AiiDA also has a detailed record of the workflow 9 

execution called the provenance graph. It is worth mentioning that the plugin module 10 

interfaces AiiDA with commonly used simulation software, such as VASP, Quantum 11 

ESPRESSO, LAMMPS and GROMACS. AFLOW (http://www.aflowlib.org) is a WM 12 

written in C++, which can automatically calculate various properties of materials. The 13 

material database AFLOWLIB[34] is powered by AFLOW. MyQueue 14 

(https://myqueue.readthedocs.io/en/latest) is an open-source front-end for job 15 

schedulers written in Python, which has a simple Python interface that can be used to 16 

define workflows. Pipeline Pilot (https://www.3ds.com/products-17 

services/biovia/products/data-science/pipeline-pilot) is a commercial WM distributed 18 

by BIOVIA. Unlike WMs introduced above, when using the pipeline pilot as the WM, 19 

we build workflows through graphical user interface (GUI) rather than programming. 20 

Pipeline Pilot encapsulated complex functions in “components”. We can drag and drop 21 

these “components” and link them to build a workflow. It is worth mentioning that, 22 

many functions in BOVIA Materials Studio, the material design commercial software 23 

distributed by the same company, are also encapsulated as “components” for Pipeline 24 

Pilot to build workflows. 25 

 26 

With the help of these WMs, automated computational workflows can become more 27 

intelligent. Due to unreasonable structures and simulation parameters, the simulation 28 

software may fail sometimes. If an error detecting and fixing sub-workflow is attached 29 

to each property simulation sub-workflow, the material screening will become more 30 



 

 

stable and reliable. In fact, custodian is a Python library designed to detect and fix errors 1 

for simulation software.[25] The “aiida-simulation software” (e.g. aiida-vasp and aiida-2 

lammps) plugins of AiiDA are also designed for the same purpose.[26,27] AFLOW can 3 

also identify various errors that occur during the operation of the simulation software, 4 

and actively correct them.[28,29] Besides, several new methods have been proposed that 5 

allow machines to make decisions that were previously only possible with human 6 

experience. These methods can be introduced as decision making sub-workflows, 7 

which makes the workflow more intelligent. For example, NEB is an important tool for 8 

the evaluation of the ionic conductivity of battery materials, but the ion transport path 9 

needs to be specified manually. In order to find the ion transport path with the lowest 10 

diffusion energy barrier, a large number of NEB calculations are required. He et al.[35-11 

38] developed a method combining the crystal structure analysis by Voronoi 12 

decomposition (CAVD) method and the band valence site energy (BVSE) method. By 13 

analyzing the crystal structure, CAVD method can obtain the ion transport network and 14 

all possible ion transport paths. BVSE method, on the other hand, can predict the 15 

diffusion energy barrier on each ion transport path, thereby predicting the path with the 16 

lowest diffusion energy barrier. Using this method, one not only can save the trouble of 17 

manually path specifying, but also find the path with the lowest diffusion energy barrier 18 

directly to a large extent. Applying such method to an automated workflow will enable 19 

the rational decision making for the evaluation of the ionic conductivity. 20 

 21 



 

 

 1 

Figure 2. Workflow and results of the SSEs screening. a) The funnel-shaped workflow 2 

used for the SSEs screening. Reproduced with permission.[13] Copyright 2020, Royal 3 

Society of Chemistry. b) Diffusion coefficients obtained from FPMD of the well-known 4 

superionic conductor Li20Ge2P4S24 and the selected candidates: Li4Ga4I16, Li7Ga8Br24, 5 

Li8Cs4I12, Li40Cl24O8, Li20Cl12O4, and Li56Ta8O48. Reproduced with permission.[13] 6 

Copyright 2020, Royal Society of Chemistry. c) The MSD of Li and I at 750 K obtained 7 

from FPMD in Li4Ga4I16. Reproduced with permission.[13] Copyright 2020, Royal 8 

Society of Chemistry. 9 
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Research works using automated computational workflows 11 

In this section, research works using automated computational workflow as the main 12 

tool will be presented. The focus will be on the research and development of battery 13 

materials, and works in other fields will also be briefly introduced. 14 

 15 

The automated computational workflow method has been successfully applied in the 16 

field of battery materials.[13,20,39-42] Taking SSE as an example, a promising SSE 17 

material should at least meet the following five criteria: (1) electronically insulating; (2) 18 

wide electrochemical stability window and low reactivity with the anode/cathode 19 

materials; (3) high lithium ionic conductivity; (4) high elastic modulus to prevent the 20 

growth of lithium dendrites; (5) the interfaces between the SSE and the anode/cathode 21 

material cannot hinder the conduction of lithium ions.[17,18] It can be seen that judging 22 



 

 

whether a lithium-containing compound is a qualified SSE involves a complicated 1 

workflow. Kahle et al.[13] designed a funnel-shaped automated high-throughput 2 

screening workflow to search for SSEs as illustrated in Figure 2a. AiiDA was used for 3 

the workflow construction and execution. From about 1,400 distinct lithium-containing 4 

compounds in the Inorganic Crystal Structure Database (ICSD)[43] and Crystallography 5 

Open Database (COD)[44] databases, five fast ion conductors, whose lithium ion 6 

diffusion coefficients are comparable to the well-known Li20Ge2P4S24,
[45] were selected 7 

(Figure 2b). Among the five candidate materials, taking Li4Ga4I16 as an example, the 8 

mean square displacement (MSD) of Li and I ions at 750 K is shown in Figure 2c. As 9 

illustrated in the red box in Figure 3, the screening workflow can be described as 10 

follows: (1) exclude the structures that have partial occupancies or attached hydrogen 11 

as well as the structures with rare or dangerous elements. Next (2) determine whether a 12 

lithium-containing compound is insulating. If it is an insulator, then (3) a surrogate 13 

model called the pinball model will be used to predict its lithium ion diffusion 14 

coefficient. If a high diffusion coefficient is obtained from the pinball model, then (4) 15 

first-principle molecular dynamics (FPMD) will be adopted to calculate a more accurate 16 

diffusion coefficient as the final criterion. It can be seen that this screening workflow is 17 

composed of four first-order sub-workflows connected according to a “progressive” 18 

logic (see the red box in Figure 3). Among them, the electronic band structure first-19 

order sub-workflow can be further divided into three second-order sub-workflows, 20 

including a structure optimization, a static self-consistent field (SCF) calculation, and 21 

a static non-SCF calculation (see the blue box in Figure 3). Similarly, the structure 22 

optimization second-order sub-workflow can be further divided into four third-order 23 

sub-workflows, including writing input files, running simulation software, storing 24 

output results and passing to next workflow (see the yellow box in Figure 3). These 25 

four third-order sub-workflows can no longer be decomposed, so they are atomic-26 

workflows. In fact, both the electronic band structure workflow and the structure 27 

optimization workflow are the most commonly used workflows, which have been 28 

encapsulated and can be directly reused. Here, in order to illustrate their structures in 29 

detail, they are expanded. 30 
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 2 

Figure 3. The structure of the SSEs screening workflow. The workflow in the red box 3 

refers to Ref.[13]. The workflows in the blue and yellow boxes refer to Ref.[25]. 4 

 5 

In the field of battery materials, automated computational workflow methods are not 6 

only used in the screening of SSEs, but also in the study of traditional liquid electrolytes 7 

and additives. Since liquid electrolytes are mainly composed of molecules, Halls et al.[39] 8 

designed a high-throughput workflow for the simulation of fundamental molecular 9 

properties including the highest occupied molecular orbital (HOMO) energy, lowest 10 

unoccupied molecular orbital (LUMO) energy, vertical ionization potential (IPv), 11 

vertical electron affinity (EAv), dipole moment, polarizability and chemical hardness. 12 

Pipeline Pilot was used for the workflow construction and execution. Using this 13 

workflow, a database of additives based on fluoro- and alkyl-derivatized ethylene 14 

carbonate (EC) was built. After a simple statistical analysis of the database, it can be 15 

found that the maximum relative EAv of fluorinated EC is 4.13 eV, which is much 16 

higher than that of alkylated EC, indicating the great improvement by including fluorine 17 

into the molecular structure. 18 

 19 

Another work focusing on the molecular structures and properties of liquid electrolytes 20 

was conducted by Qu and co-workers.[41] Three automated workflows for the 21 



 

 

simulation on molecules was constructed: (1) IP and EA calculation; (2) salt complex 1 

generator; (3) ion pair dissociation constant calculation. FireWorks was used for the 2 

workflow construction and execution. These workflows are well encapsulated in the 3 

Python library rubicon (https://github.com/materialsproject/rubicon) and can be used in 4 

the screening of liquid electrolytes. Among them, IP and EA are capable of determining 5 

the electrochemical window. Salt complex generator is able to predict the lowest energy 6 

complex configuration while ion pair dissociation constant can be used to compute the 7 

ion-pair formation driving force. These workflows were used in the Electrolyte Genome 8 

Project,[46] which created a molecule property database which is publicly available and 9 

integrated into the Materials Project's Explore Molecule application 10 

(https://materialsproject.org/#search/molecules). 11 

 12 

Next, this is a multi-scale research investigating the influence of the electrolyte 13 

composition on the battery performance. In LIBs, the liquid electrolytes generally 14 

contain lithium salts, carbonate solvents and additives. Since the additives have an 15 

effect on the transport properties of the electrolyte, they will have a direct influence on 16 

the battery performance. Hanke et al.[42] constructed a multi-scale automated 17 

computational workflow which enables multi-scale simulations from electrolyte 18 

composition (type and proportion of solvent/additive, salt concentration) to electrolyte 19 

transport properties (conductivity, diffusion coefficient and transference number of 20 

lithium ions at different temperatures and salt concentrations) and to battery 21 

performance (discharge voltage profile and cell temperature profile at different 22 

temperatures and discharge rates). Pipeline Pilot was used for workflow construction 23 

and execution. The simulation from the electrolyte composition to the transport 24 

properties was achieved through MD, and the simulation from the electrolyte transport 25 

properties to the battery performance was achieved through the extended Newman 26 

model. The inputs of the workflow include electrolyte composition and simulation 27 

temperature. And the workflow can be briefly described as follows: (1) generate the 28 

structure of the electrolyte with the specified composition (about 200 solvent molecules 29 

and a specified number of lithium salts); (2) perform 100 ps MD in the NPT ensemble 30 



 

 

at the specified temperature to thermalize the structure; (3) perform 5 ns MD in the 1 

NVE ensemble at the specified temperature to obtain the equilibrium transport 2 

properties; (4) repeat step 1 to step 3 for five times and use the averaged results to 3 

calculate the transport properties of the electrolyte; (5) pass the transport properties 4 

obtained in step 4 to the extended Newman model and simulate the battery performance. 5 

Since LIBs are the most widely used rechargeable batteries today, it is of great practical 6 

significance to design non-flammable, non-toxic and environmentally friendly liquid 7 

electrolytes for LIBs. The multi-scale workflow designed by Hanke and co-workers 8 

enables the exploration of electrolytes that meet the requirements mentioned above 9 

without compromising the battery performance. 10 

 11 

Automated workflows have also been applied to the study of electrode materials, for 12 

example, by deciding which implementation of the NEB should be used to calculate 13 

ion diffusion barriers, depending on the material properties.[47-50] Bölle et al.[20] built an 14 

automated screening workflow for intercalation electrodes in batteries based on the 15 

calculations of volume change during charging/discharging, charge carrier adsorption 16 

energy and diffusion barriers (Figure 4a). MyQueue was used for workflow 17 

construction and execution. The volume change during charging/discharging can 18 

determine the stability of the electrodes. The charge carrier adsorption energy can 19 

predict the open circuit voltage and the diffusion barrier can evaluate the ion mobility 20 

at different charge states. This workflow has been tested to identify potential cathode 21 

materials for Mg-ion batteries. The volume change, the open circuit voltage and the 22 

height of diffusion barrier of MgTi2O4, MgV2O4, MgMn2O4, Mg3Cr2(SiO4)3, 23 

Mg3Mn2(SiO4)3 and the well-known Chevrel phase MgMo3S4 are shown in Figure 4b-24 

d respectively. It can be seen that, the tested materials can further optimize the 25 

performance of the Chevrel phase, the most common cathode material in Mg-ion battery, 26 

with higher open circuit voltage and lower Mg2+ diffusion energy barrier. 27 

 28 



 

 

 1 

Figure 4. Workflow of the intercalation electrodes screening and results of the Chevrel 2 

phase and the five tested materials. a) The workflow used for the intercalation 3 

electrodes screening. Reproduced with permission.[20] Copyright 2020, Wiley-VCH 4 

Verlag GmbH & Co. KGaA, Weinheim. b) Volume change when the cathode material 5 

is charged. Reproduced with permission.[20] Copyright 2020, Wiley-VCH Verlag GmbH 6 

& Co. KGaA, Weinheim. c) OCVs at different charge states. Reproduced with 7 

permission.[20] Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. d) 8 

The height of the diffusion barrier calculated from the climbing image reflective nudged 9 

elastic bands method. Reproduced with permission.[20] Copyright 2020, Wiley-VCH 10 

Verlag GmbH & Co. KGaA, Weinheim. 11 
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Besides battery materials, the automated computational workflow method has also been 13 

applied in several other fields, such as surface science,[51,52] two-dimensional (2D) 14 

materials,[53,54] and photoelectrochemical materials.[55] Montoya et al.[51] and Tran et 15 

al.[52] constructed automated workflows to realize the high-throughput calculation of 16 

surface energy and adsorption energy. Given structures of the bulk and the adsorbate, 17 

the workflow will (1) enumerate the surfaces of the bulk and calculate the surface 18 



 

 

energy; (2) enumerate the adsorption sites on the surface and place the adsorbate on the 1 

site to calculate the adsorption energy. Haastrup et al.[53] created more than 1,500 2 

different 2D materials by combinatorial lattice decoration of known crystal structure 3 

prototypes. An automated workflow was then constructed to calculate various materials 4 

properties of these 2D materials, the results of which constitute the Computational 2D 5 

Materials Database (C2DB). Mounet et al.[54] designed an automated screening 6 

workflow to search for easily exfoliable layered three-dimensional (3D) materials. The 7 

workflow will detect whether a 3D material is a layered material, and if it is, the 8 

workflow will further determine whether its binding energy is small enough for 9 

exfoliation. Among 108,432 experimentally known 3D compounds downloaded from 10 

the ICSD and COD databases, 1,036 easily exfoliable candidates were selected. Kuhar 11 

et al.[55] built an automated screening workflow to search for the large-band-gap 12 

component in water splitting tandem devices. The material screening is based on the 13 

essential properties including thermodynamic stability, light absorption, charge 14 

mobility, and defect tolerance. Eight compounds were selected from 705 ABS3 15 

compounds. LaYS3, a promising candidate, was successfully synthesized 16 

experimentally, confirming the effectiveness of the screening. 17 

 18 

It can be seen that the automated computational workflow also has potential in other 19 

material fields. In fact, if a material needs to possess multiple functions, and the 20 

evaluation of these functions can be quickly realized by computational simulations, 21 

using WM to build a computational workflow to study all relevant materials in the 22 

database will be a more systematic approach. Nowadays, the complexity of material 23 

design is getting higher. Materials need to possess good intrinsic properties, and their 24 

microstructures, synthesis, prices, safety and environmental friendliness are equally 25 

important. Fortunately, simulation methods are getting more advanced, and the 26 

computing power is growing rapidly. Under such circumstances, WM, as an important 27 

tool to achieve computational high throughput, may play an important role in battery 28 

materials as well as other fields in the future. 29 

 30 



 

 

Future perspectives in computational workflows 1 

Although the automated computational workflow method has already been applied in 2 

the field of battery materials, it is still far from large-scale applications due to existing 3 

unresolved challenges. To achieve more widespread use, we propose the following 4 

research efforts and directions: 5 

 6 

(1) At present, the material structures for high-throughput screening mainly come from 7 

mature material databases. However, there are many new materials and their metastable 8 

phases that have not been discovered. For example, Yu et al.[56] synthesized fluorinated 9 

1,4-dimethoxylbutane (FDMB) as the electrolyte solvent. Pairing FDMB with 1 M 10 

lithium bis(fluorosulfonyl)imide, this electrolyte showed excellent performance in 11 

lithium metal batteries (LMBs). However, when the research work was reported, this 12 

simple molecule FDMB had not been included in the Chemical Abstracts Service (CAS) 13 

yet. It can be seen that some undiscovered materials may play an important role in the 14 

field of batteries. In the future, we can integrate structure prediction methods[57-62] into 15 

a workflow to find the structure with the global minimum energy of a given composition. 16 

By integrating such method, we can expand the search space for battery materials, 17 

thereby increasing the chances of finding novel battery materials. However, current 18 

structure prediction methods have difficulties in predicting large systems. Larger 19 

systems are common in battery research. Therefore, we should further develop structure 20 

prediction techniques. Structure prediction is to search for the structure corresponding 21 

to the global minimum on the potential energy surface, which is fundamentally an 22 

optimization problem. If the system to be predicted contains N atoms, the dimension of 23 

the search space is 6 + 3(N - 1).[57] This is why the structure prediction of large system 24 

is difficult. In order to realize the structure prediction of large system, we not only have 25 

to test newly developed optimization methods, but more importantly, reduce the 26 

dimension of the search space and properly determine the boundaries of the search 27 

space according to laws of crystal structures. 28 

 29 

(2) High-throughput screening for battery materials consumes a lot of computing 30 



 

 

resources, especially when kinetic factors are considered.[13] Surrogate models can be 1 

adopted to achieve a trade-off between accuracy and computing cost.[52] For example, 2 

using Atomistic Machine-learning Package,[63] the potential energy surface of the 3 

studied system can be created by machine learning instead of density functional theory 4 

(DFT). The created potential energy surface can be used together with DFT to perform 5 

NEB calculations, which can greatly speed up the estimation of ionic conductivity for 6 

battery materials.[52] BVSE is another empirical method for diffusion energy barrier 7 

prediction.[64] The BVSE method was developed on the basis of the BV method, a 8 

method capable of predicting the bonding geometry and structure of a complex material. 9 

The results of the BVSE method are 3D grids, through which we can predict the ion 10 

transport path and the diffusion energy barriers. Machine learning methods can greatly 11 

improve the efficiency of MD. The machine learning force field (MLFF) created by the 12 

on-the-fly force field generation method can accelerate the MD simulation by hundreds 13 

or thousands of times compared with FPMD.[65,66] Using the MLFF, the computational 14 

cost of MD simulation only increases linearly with the system size. We can further 15 

improve the parallel efficiency of simulation software and use tools with stronger 16 

computing power such as the graphic processing unit (GPU).[67,68] In the future, we need 17 

to develop more advanced simulation methods to achieve higher accuracy while saving 18 

computing resources. For now, we can use high-accuracy (but time-consuming) 19 

advanced methods to generate training sets for training machine learning models. The 20 

obtained machine learning model can have accuracy close to advanced methods and 21 

speed close to empirical methods, such as the MLFF mentioned above. This might be 22 

a good compromise between accuracy and speed. 23 

 24 

(3) There are only a few application scenarios of the automated workflow in the field 25 

of batteries, for example, the screening of battery materials and the construction of 26 

material property databases, and the objects are mainly bulk materials or molecules. 27 

However, the interfaces between battery materials are equally important, and many 28 

critical battery reactions occur at the interfaces between the electrode and the electrolyte, 29 

such as SEI formation and evolution, lithium dendrite growth, etc. In the future, we can 30 



 

 

use automated computational workflow method to model and simulate the interfaces 1 

between battery materials, and attempt to explain battery mechanisms in greater detail. 2 

Compared to bulk or molecular materials, modelling of battery interfaces is much more 3 

tedious because of the large systems involved, which lends itself to automated 4 

workflows. In doing so, we also need to incorporate realistic charge and solvent effects 5 

at the interfaces, for example, by including the electrochemical potential and using 6 

implicit or explicit solvent models.[69] Machine learning is an important method for 7 

battery material research.[70,71] For machine learning, dataset construction, model 8 

selection and training are equally important. Due to the high-throughput nature of the 9 

automated computational workflow method, it is very suitable for the construction of 10 

machine learning datasets. For example, Zhao et al.[72] realized the prediction of 11 

activation energy in cubic lithium-argyrodites system by machine learning. Since a 12 

dataset containing activation energies is required to train the machine learning model, 13 

Zhao and co-workers calculated activation energies of 50 cubic lithium-argyrodites 14 

using their home-made high-throughput screening platform for solid electrolytes 15 

(SPSE)[37] automatically. This is an example of constructing machine learning dataset 16 

using automated workflow, which is encouraged in the future research. 17 

 18 

(4) Constructing automated workflows requires programming skills. Therefore, while 19 

improving the programming ability is important, we also encourage the sharing of 20 

automated workflows. We can share our workflows in material research forums or code 21 

hosting sites like GitHub, GitLab, and SourceForge, and these workflows can be 22 

gradually improved by other researchers. When these workflows are needed, we can 23 

download and reuse them conveniently. Through AiiDA plugins, dozens of automated 24 

workflows for materials research have already been shared. This kind of co-25 

construction and sharing model will accelerate the research and development of battery 26 

materials greatly. 27 

 28 

Future perspectives in experimental workflows 29 

In fact, automated high-throughput experiments are also needed to complement the 30 



 

 

automated computations discussed above. In the field of battery materials, we propose 1 

the following research endeavors in the 3 main stages of materials synthesis, operando 2 

characterization and battery testing to form an automated experimental workflow 3 

(Figure 5): 4 

 5 

 6 

Figure 5. Automated experimental workflow for the research and development of 7 

battery materials. a) Materials synthesis. Reproduced with permission.[73] Copyright 8 

2015, Society for Laboratory Automation and Screening. b) Operando characterization. 9 

Reproduced with permission.[74] Copyright 2016, International Union of 10 

Crystallography. c) Battery testing. Reproduced with permission.[75] Copyright 2020, 11 

The Authors. 12 

 13 

(1) Combinatorial and high-throughput experimental methods have been used for rapid 14 

synthesis of materials.[76,77] Traditional synthesis methods are often performed single 15 

step at a time, which is slow and costly. With combinatorial synthesis, materials and 16 

interfaces of different chemical compositions, phases, dopants, defects, etc. can be 17 

prepared. Advanced techniques such as robotics, thin film sputtering, jet dispensing, 18 

and pulsed laser deposition can be used to synthesize and optimize such materials in a 19 

high-throughput manner (Figure 5a).[73,78-81] Using these techniques, we can also easily 20 

investigate different electrode and electrolyte materials as a function of the synthesis 21 

parameters, which allows more rapid tuning of these parameters. 22 

 23 

Although high-throughput synthesis of battery materials has been reported, such 24 

examples are relatively scarce in the literature, which could be due to the air-sensitive 25 

nature of many electrode and electrolyte materials. In the future, we can integrate the 26 

robotic synthesis platform with a glove box and an inert gas supply, or even perform 27 

the automated synthesis in a dry room. Right now, many of the high-throughput 28 



 

 

synthesis methods are performed on a relatively small laboratory scale. The ability to 1 

scale up the automated production of battery materials and interfaces is also of 2 

significant concern and should be further explored for practical applications. 3 

 4 

(2) Characterization of battery materials can also be performed in an automated manner. 5 

For example, electrode materials have been studied using X-ray diffraction and X-ray 6 

absorption spectroscopy with an automated sample changer for characterization of 7 

chemical phases and local structures (Figure 5b).[74] In a similar way, one can also 8 

envision other techniques such as Raman spectroscopy being performed using an 9 

automated sample feed system with a translating/rotating sample stage to investigate 10 

the chemical composition of battery materials. For accurate characterization of battery 11 

interfaces, surface-sensitive spectroscopic techniques such as X-ray photoelectron 12 

spectroscopy (XPS) can be used to ascertain the chemical composition of interfaces as 13 

a function of depth.[82] Microscopic techniques such as transmission electron 14 

microscopy (TEM),[83] cryogenic electron microscopy[84] and scanning probe 15 

microscopy[85] can be used to study the surface topology, nanostructure and thickness 16 

of the interfaces.  17 

 18 

The future challenge is to incorporate robotics and automation into a wider range of 19 

characterization techniques so that they can be carried out in a high-throughput manner. 20 

Examples of emerging characterization techniques include ambient-pressure XPS[86] 21 

and liquid-phase TEM,[87] which allow battery materials and interfaces to be studied 22 

more realistically in the presence of a thin film of electrolyte. Moreover, it is important 23 

to address critical issues such as formation of hot spots in liquid-phase TEM cells, 24 

which can lead to artificially enhanced electrochemical activity. High-throughput TEM 25 

is already an active area of research in biological imaging, using automation 26 

technologies such as reel-to-reel tape translation system and nano-positioning sample 27 

stage;[88,89] we hope that it can be applied to study battery materials as well. 28 

 29 

(3) Finally, the batteries should be screened and tested in parallel in a rapid and high-30 



 

 

throughput manner, preferably under controlled temperature and humidity conditions 1 

(Figure 5c).[75] To perform high-throughput screening of battery materials on a small 2 

scale, one potential way is to design tiny electrochemical cells such as microfluidic cells, 3 

consisting of miniaturized components (working, counter, reference electrodes) that are 4 

integrated into a flow-based microfluidic chip.[90] On a larger scale, batteries can also 5 

be assembled using an automated production line, which involves mixing of various 6 

components (active material, conductive additive, binder), coating onto current 7 

collectors, calendering to form electrode films, slitting into appropriate dimensions, and 8 

assembly into full cells for testing (Figure 6).[91,92] An example of such automation 9 

technique is continuous Z-folding, where cathodes and anodes are placed alternately 10 

above and below a continuously fed separator strip before being folded in a zigzag 11 

manner using circumferential grippers.[92]  12 

 13 

The battery testing and screening process can be further augmented using machine 14 

learning. For instance, by using big data to train a machine learning model, Severson et 15 

al. managed to use the early few test cycles to screen batteries based on low and high 16 

cycle lifetime.[93] The authors also used machine learning to optimize a parameter space 17 

specifying the current and voltage profiles of fast-charging protocols to maximize 18 

battery cycle life.[94] Future opportunities lie in improving the accuracy, explainability 19 

and generalizability of these prediction models, using state-of-the-art techniques such 20 

as explainable artificial intelligence and transfer learning.[91] The ultimate goal is to be 21 

able to integrate all these 3 components of battery materials synthesis, characterization 22 

and testing into a fully automated and continuous workflow. 23 

 24 



 

 

 1 

Figure 6. A high-throughput workflow for battery fabrication and testing. The full 2 

names of the abbreviations mentioned above are as follows. For anode material: LTO, 3 

lithium titanate; Hard C, hard carbon. For binder: PVDF, polyvinylidene fluoride; PTFE, 4 

polytetrafluoroethylene; CMC, carboxymethyl cellulose. For conductive additive: SP, 5 

super P; CNTs, carbon nanotubes. For cathode material: LFP, lithium iron phosphate; 6 

LCO, lithium cobalt oxide; NMC, lithium nickel manganese cobalt oxide. Reproduced 7 

with permission.[91] Copyright 2020, Springer Nature Limited. 8 

 9 

 10 

Conclusion 11 

In conclusion, automated computational workflows have the potential to revolutionize 12 

the way we discover new battery materials and interfaces. When they are successfully 13 

integrated with automated experimental workflows, we can envision a truly closed-loop, 14 

self-driving laboratory.[95] Hopefully these concepts can be extended to a multitude of 15 

research fields to accelerate the development of new energy storage devices and beyond. 16 
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