Memorizing Structure-Texture Correspondence for Image Anomaly Detection

Kang Zhou*, Jing Li*, Yuting Xiao, Jianlong Yang, Jun Cheng, Wen Liu, Weixin Luo, Jianliang Yang, Jiang Liu and Shenghua Gao

Abstract—This work focuses on image anomaly detection by leveraging only normal images in the training phase. Most previous methods tackle anomaly detection by reconstructing the input images with an Auto-Encoder based model, and an underlying assumption is that the reconstruction errors for the normal images are small and those for the abnormal images are large. However, these Auto-Encoder based methods sometimes even reconstruct the anomalies well; consequently, they are less sensitive to anomalies. To conquer this issue, we propose to reconstruct the image by leveraging the structure-texture correspondence. Specifically, we observe that usually for normal images, the texture can be inferred from its corresponding structure (e.g., the blood vessels in the fundus image and the structured anatomy in optical coherence tomography image), while it is hard to infer the texture from a destroyed structure for the abnormal images. It is proposed to reconstruct image texture from its structure, where a memory mechanism is used to characterize the mapping from the normal structure to its corresponding normal texture. As the correspondence between destroyed structure and texture cannot be characterized by the memory, the abnormal images would have a larger reconstruction error, facilitating anomaly detection. In this work, we utilize two kinds of complementary structures (i.e., the semantic structure with human-labeled category information and the low-level structure with abundant details), which are extracted by two structure extractors. The reconstructions from the two kinds of structures are fused together by a learned attention weight to get the final reconstructed image. We further feed the reconstructed image into the two aforementioned structure extractors to extract structures. On the one hand, constraining the consistency between the structures extracted from the original input and that from the reconstructed image would regularize the network training; on the other hand, the error between the structures extracted from the original input and that from the reconstructed image can also be used as a supplement measurement to identify the anomaly. Extensive experiments validate the effectiveness of our method for image anomaly detection on both industrial inspection images and medical images.

Index Terms—structure-texture correspondence memory, semantic structure, low-level structure, industrial inspection image analysis, medical image analysis, image anomaly detection

I. INTRODUCTION

IMAGE anomaly detection refers to the identification of abnormality by only leveraging normal images in the training phase [1][2][3]. In real scenarios, abnormal samples (e.g., the uncommon defects in industrial inspection images and the uncommon diseases in medical images) are rare and with various possibilities; thus it is not easy to collect lots of samples with all possible anomalies. Consequently, traditional image classification methods [4][5][6] cannot be directly applied in these scenarios. In contrast, it is relatively easy to collect normal training samples; therefore people propose to leverage only normal data to train a model for anomaly detection. Recently, anomaly detection has drawn lots of attention for industrial image analysis [7] and medical image analysis [8] because of its potential applications in these domains.

Typical anomaly detection methods [9][10][11][12][13] usually follow the reconstruction scheme, and we also focus on this scheme in this paper. Previous reconstruction-based methods usually use the Auto-Encoder (AE) or Variational Auto-Encoder (VAE) based model to reconstruct the input for anomaly detection. In these methods, given an image, an encoder maps the image to a latent feature space and a decoder reconstructs the image based on the latent feature. Then the image reconstruction errors for normal images are minimized in the training phase. As it is trained with normal samples only, it is assumed that such a model would have smaller reconstruction errors for normal samples and larger reconstruction errors for abnormal samples. Therefore, in the test phase, an image can be classified to be normal or abnormal by measuring the image reconstruction error. However, it has been observed that the AE/VAE usually have a small reconstruction error on these abnormal images [14][15]. Consequently, they are less sensitive to detect the abnormal image. It is desired to design a model that is more sensitive to abnormal images.

We observe that the normal image is highly structured, while the regular structure is broken by the disease in abnormal images. Therefore, the normal texture can be inferred from the normal structure, while it is hard to infer the abnormal texture from the abnormal structure, as shown in the Fig. 1. Thus we propose to leverage the structure-texture correspondence for image anomaly detection. In our solution, a Structure-Texture Correspondence Memory (STCM) module is proposed, where
the mapping from normal structure to its corresponding normal texture is characterized with a memory. As only the correspondence between the normal structure and the normal texture is memorized, a large reconstruction error is reached for the abnormal images, which can be used for better detecting the anomalies.

Concretely, we leverage two types of structures (i.e., the semantic structure and the low-level structure) for reconstruction. We treat the semantically meaningful information (e.g., vessel topological structure in fundus images, and the anatomic layer structure in optical coherence tomography (OCT) images) in an image as the semantic structure but such semantic structure needs expensive human labeling. Usually such annotations are not provided for anomaly detection data, we propose to use a domain adaptation approach to leverage the annotation in other annotated datasets to train the semantic structure extraction network. Further, the extracted vessels are usually not complete and some finer vessels are not included. As a supplement, the low-level structure (e.g., Canny edge) is abundant of detailed information and does not require additional labeling. As shown in Fig. 2 (a), we first extract the two kinds of structures with two structure extractors. The extracted structures are then fed into the STCM module to get two reconstructed images. Then one image and the other image are fused together to get the final reconstruction image with different weights, which is conditioned on the input image and learned with an attention network, for a better reconstruction for normal images.

Additionally, in the scenario of medical image analysis, doctors can make diagnoses by the aid of the structures [17][18][19]. Based on this observation, we fed the reconstructed image into two aforementioned structure extractors again. The structures extracted from the reconstructed image are used from two aspects. In the training phase, the error between the structures extracted from the original input image and that from the reconstructed image is minimized to enforce the image is well reconstructed, which serves as a regularizer for network training. Meanwhile, a larger error is reached for the abnormal image in the structure space, especially in the semantic structure. Therefore the semantic structure error can be used as an additional measurement for identifying the anomaly in the test phase.

We term the proposed network as Structure-Texture Memory Network (MemSTC-Net) and the main contributions are summarized as follows:

1) we propose a STCM module by leveraging the correspondence between structure and texture for image reconstruction. Specifically, a memory only stores the mapping from the normal structure to its corresponding normal texture in the STCM module. Therefore a large reconstruction error is reached for the abnormal image;

2) a complementary pair of structures are leveraged for better reconstruction. To be specific, the semantic structure contains semantically meaningful information and the low-level structure contains abundant details;

3) since the semantic structures are not given on most datasets for medical images anomaly detection, we employ a domain adaptation method to extract the semantic structure by leveraging other datasets annotated with semantic structure;

4) we encode the reconstructed image back into the structure space, which is used as a regularizer for better normal image reconstruction in the training phase. Meanwhile, besides the error between the reconstructed image and the original input, the error between the semantics structures extracted from them is also utilized to identify the anomaly in the test phase.

This paper is an extension of our previous work [20]. We extend the framework in the following aspects: i) to encode the structure-texture correspondence, in this paper, we propose to memorize the correspondence between the structure and its texture. In [20], we encoded the structure-texture relation by fusing the last layer feature in a texture encoder with the structure feature to reconstruct the image. However, since the input of texture encoder is the original image, the texture encoder probably introduces abnormal information for abnormal
image reconstruction in the test phase, which is unfavorable for anomaly detection. Thus, we propose to remove the texture encoder in P-Net [20] and introduces a STCM module to memorize the structure-texture correspondence of the normal images for image reconstruction; ii) we propose to leverage the low-level structure as a complement to the semantic structure, which is the only structure in [20]; iii) more experiments are conducted to further validate the effectiveness of our approach.

The rest of this paper is organized as follows: In Section II, we introduce the work related to the proposed method. In Section III, we detail our proposed MemSTC-Net for image anomaly detection. In Section IV, extensive experiments are conducted to validate the effectiveness of our method. We conclude our work in Section V.

II. RELATED WORK

Anomaly detection usually refers to one-class learning, which is essentially a semi-supervised case that trained only with normal data in an inductive learning manner. In such case, the training data is not polluted by anomalies and the goal is to detect whether a test sample is abnormal or not [21][22]. Differently, outlier detection refers to training a model from the unlabeled polluted data, which contains both normal data and abnormal data [21][22][23]. As the outliers make it harder to fit the model, the goal of outlier detection is to remove the outliers during the training in a transductive learning manner [23][24]. In some literature works, these two terms are used interchangeably [1][25][2][3]. In this paper, we focus on the anomaly detection.

A. Anomaly Detection

Anomaly detection is a valuable field in the machine learning community [1][3]. In anomaly detection problem, the anomalies are defined as the samples out of the distribution of the normal ones. It is natural to learn a discriminative hyper-plane to separate the abnormal samples from the normal samples. One-Class Support Vector Machine (OCSVM) [26] and Kernel Density Estimation [27] are two delegates of the classical anomaly detection methods. However, these methods often fail in the scenarios where the data is high-dimensional and large-scale, due to the expensive computational cost [28]. Therefore, Ruff et al. [28] proposed deep one-class SVDD, which trains a neural network while minimizing the volume of a hypersphere that encloses the network representations of the data. In this way, the potential anomalies are far away from the hypersphere center. Besides, Li et al. [29] proposed to use the Gaussian Mixture Models (GMM) to model the distribution of normal samples, and the samples out of the mixed Gaussian distribution are probably abnormal. Based on GMM, Zong et al. [15] proposed to utilize a deep Auto-Encoder to generate a low-dimensional feature and reconstruction error for each input sample, which are further fed into a GMM. Since the GMM has many parameters, McNicholas et al. [30] proposed to reduce the parameters by a latent Gaussian model, which is closely related to the factor analysis model (a data reduction technique) and yielded parsimonious mixture models (PMM). When the feature space is large, clusters may manifest anomalies on the very small feature subsets, which can be well-captured by the PMM. In this way, Miller et al. [31] proposed a method with PMM for anomaly detection, which is used for both the null and the alternative hypothesis and with the Bayesian Information Criterion adjudicating between these hypotheses. [32][33] use a deep Auto-Encoder to learn the low-dimensional features of input data, and the clustering-based anomaly measures are used in the latent representation space. Pang et al. [34] proposed a ranking model-based framework, which optimizes the representations so that the nearest neighbor distance of pseudo-labeled anomalies is larger than that of pseudo-labeled normal instances.

In the image anomaly detection areas, Carrera et al. [35] proposed to use convolutional sparse models to learn a dictionary of filters to detect abnormal regions. AnoGAN [8] is proposed by Schlegl et al., which introduced Generative Adversarial Network (GAN) [36] to generate normal images from a latent space with Gaussian distribution in the training phase, and test samples are recognized as anomalies when the corresponding latent code is out of the distribution. In [8], the residual loss is introduced to map the image to the latent space but this process is slow. To address this issue, the same authors [37] proposed to use an encoder to learn the mapping from the image to the latent space. Similar to AnoGAN [8], GANomaly [38] proposed by Akcay et al. also involved representation learning in a latent space, which trains an encoder-decoder-encoder network with the adversarial learning scheme to capture the normal distribution from both images and latent space. Zimmerer et al. [12] proposed the context-encoding Variational Auto-Encoder for anomaly detection on brain MRI, while Chen et al. [10] initially proposed to use adversarial Auto-Encoder for anomaly detection on brain MRI. Almost at the same time, Baur et al. [9] proposed to use a deep Auto-Encoder that combines spatial AEs and GANs for anomaly detection on brain MRI. As discussed before, the structure and texture in normal images are closely related. However, these existing methods do not exploit encoding the structure-texture correspondence for image anomaly detection. More work related to anomaly detection can be found in the recent comprehensive survey paper [2][3].

B. Outlier Detection

Outlier detection is usually used for data cleaning: removing the outliers from the training set such that the desired parametric statistical model can fit the data more smoothly [23]. Before the deep learning era, statistical model, neighbor-based method, and the method based on Principal Component Analysis (PCA) are applied to outlier detection [39][40][41]. Specifically, the statistical method fits the distributions on data [39], and the outliers have the lower probability than the inliers under the learned distributions. Neighbor-based method assumes that the inliers have dense areas while the outliers are far from these areas [40]. [41] learns the PCA projections from the data and the samples with the largest variances are identified as outliers. In the deep learning era, Xia et al. [24] addressed outlier detection by leveraging the
reconstruction error of an Auto-Encoder and its variant. They showed that an Auto-Encoder is simple but effective for outlier detection. Furthermore, they gradually inject discriminative information in the learning process to make the inliers and outliers more separable. Instead of the commonly-used Auto-Encoder in previous methods, Wang et al. [42] proposed an E^3Outlier framework in an effective and end-to-end manner. Specifically, E^3Outlier leverages a discriminative network with the self-supervised learning for better feature representation. [42] also exploits a novel inlier priority to enable end-to-end framework by the discriminative network. In [15], Zong et al. proposed a Deep Autoencoding Gaussian Mixture Model and they conducted experiments under both anomaly detection and outlier detection problem.

C. Structure-Texture Relation Encoding Networks

Image structure has been successful used for semantic image synthesis [43], image inpainting [44][45], and video inpainting [46]. Tang et al. [43] proposed to use the edge as an intermediate representation since the edge introduces detailed structure information, which is further adopted to guide the texture generation. The edge information is also used in the image inpainting task. Nazeri et al. [45] proposed a model, in which the full edge map of an incomplete image is predicted by an edge generator. Then the predicted edge map and the incomplete image are concatenated and fed to an image completion network to inpaint the full image with generated texture. However, the intensity distribution of the edge map is notably different from that of the image. To address this issue, Ren et al. [44] proposed to leverage a edge-preserved smooth image to represent the structure in an image, and proposed a two-stage model that splits the inpainting task into two parts, structure reconstruction and texture generation. In video inpainting, Wang et al. [46] proposed to first complete edges in the missing regions via an edge inpainting network with 3D convolutions networks. Then, the proposed method reconstructs the textures using a coarse-to-fine synthesis network under the guidance of the predicted edges. Among these methods, the relation of structure-texture is implicitly learned by the neural network in the ‘original image-to-predicted structure-to-reconstructed image’ pipeline. Motivated by these methods, we propose to model the normal structure-texture relation for image anomaly detection. Besides, the structure-texture correspondence is modeled explicitly in the proposed STCM.

D. Memory-augmented Networks for Anomaly Detection

Memory-augmented networks are the neural networks that have external memory where the information can be saved and loaded. Memory-augmented networks have attracted interest to solve anomaly detection problems [14][47][48]. Gong et al. [14] introduced a Memory-Augmented Auto-Encoder (MemAE) for anomaly detection in natural images and surveillance videos. Specifically, the memory in [14] is designed by recording the prototypical patterns in normal images or videos. Since the patterns in natural images and videos are diverse, the authors [14] propose to use a soft addressing vector for accessing the memory, and apply a hard shrinkage operation to promote the sparsity of the addressing vector. Based on the MemAE [14], Zhang et al. [47] proposed a memory-augmented anomaly generative adversarial network (MA-GAN), which improve the MemAE with a discriminator [36], for retinal OCT screening. For anomaly detection in diverse images and videos, the main drawback of MemAE [14] is that it does not consider the diversity of normal patterns explicitly. To address this problem, Park et al. [48] proposed to use a memory module with a new update scheme where items in the memory record prototypical patterns of normal data. As a summary, previous methods adopted a memory to memorize the latent feature of normal images for image anomaly detection. However, this strategy is unsuitable to explicitly encode the structure-texture correspondence. To memorize the structure-texture correspondence, we create a memory to save the paired information of structure and its texture, and we use the structure feature as a query to retrieve the corresponding texture feature.

E. Self-supervision for Anomaly/Outlier Detection

Recently, many self-supervised learning methods are proposed to learn the general image features from unlabeled data without any human annotations, which can be used for downstream tasks such as image classification and segmentation [49]. The self-supervision signal includes image rotation [50], image jigsaw puzzle [51], image patch permutation [52], gray image colorizing [53], image inpainting [54], etc. Recently, some literatures [55][12][42][56] explores self-supervision for anomaly/outlier detection. Specifically, Golan et al. [55] proposed to train a multi-class model to discriminate the types of geometric transformation applied to the normal images. At test time, the distribution of softmax response values of training images are used to detect anomalies. Inspired by the success of inpainting for feature learning [54], Zimmerer et al. [12] proposed a novel image reconstruction network, which takes the image with a missing region as input and takes the original image as ground-truth for reconstruction. Similarly, the method proposed (termed SMAI) in [56] also aims to learn features with inpainting for anomaly detection. Differently, SMAI [56] first performs superpixel segmentation on the input images, and then SMAI trains an inpainting module on the normal samples through random superpixel masking and restoration. Thus, the model can fill the superpixel mask with normal content in reconstruction. During the test phase, SMAI masks the image using superpixels and restores them one by one. In this way, SAMI can identify the abnormal regions by comparing the mask areas of the original images and its reconstruction. For outlier detection, Wang et al. [42] proposed to create multiple pseudo classes by various simple operations on the original unlabeled data. These operations include regular affine transformation, irregular affine transformation, and patch re-arranging. Differently, in our method, we leverage the cross-modality for reconstruction, which contains the mapping between the image and its low-level structure. That is to say, our method can be regarded as a type of self-supervision, where the low-level structure is leveraged as an intermediate self-supervised representation for image reconstruction.
III. Method

In this paper, we propose a Structure-Texture Correspondence Memory Network (MemSTC-Net) for image anomaly detection, which leverages the correspondence between the image texture and structure to reconstruct the image. Specifically, as shown in Fig. 2, the proposed network consists of five modules: 1) Structure Extraction module, where two networks extract semantic structure S and low-level structure E from the input image I, respectively; 2) Structure and Texture Feature Encoding module, which encodes the feature of the texture and two kinds of structure by E_{enc}, E_{enc}, and E_{enc}, respectively. This module also contains the decoders D_{e} and D_{e} to map the structure feature (z_{S}^{e} and z_{e}^{e}) to the reconstructed structure; 3) Structure-Texture Correspondence Memory (STCM) module, in which the structure-texture correspondence is memorized, and this module produces the image I_{s} reconstructed from semantic structure and the image I_{e} reconstructed from low-level structure by the texture decoder D_{e}. To memorize the structure-texture correspondence for semantic structure and low-level structure, two memory blocks (M_{s} and M_{e}) are introduced; 4) Attention-guided Fusion module, which fuses I_{s} and I_{e} with a learned attention weight automatically; 5) Structure Regularization (SR) module, which further extracts semantic structure S and low-level structure E from the reconstructed image I. By minimizing the difference between S and S and the difference between E and E, this module enforces the original image to be correctly reconstructed.

A. Structure Extraction Module

![Training diagram of the semantic structure extraction network F_s with domain adaptation.](image)

In this paper, we define two types of structure, the semantic structure, e.g. the vessel in retinal fundus image, and the anatomical layer in retinal OCT, and the low-level structure, e.g. the edge, and leverage them together for a better reconstruction for normal images. We pre-train two convolution neural networks as the structure extractors to extract the two kinds of structure. Once the structure extractors is well trained, we fix the module to simplify the optimization of the other.
modules in our MemSTC-Net. Since there is no semantic annotation in industrial inspection images [7], we only use low-level structure for industrial inspection images.

Semantic Structure. The semantic structure is with semantically meaningful category information, but needs expensive human labeling, loses detailed information and sometimes inaccurate and incomplete. We detect the anomaly in two medical image datasets, i.e. a retinal fundus dataset [57] and a retinal OCT image dataset [58]. However, the semantic structure in both datasets are not provided. Fortunately, there are several publicly available datasets for vessel segmentation in retinal fundus images and layer segmentation in retinal OCT images [59][60][61]. To leverage the existing annotations in the publicly available datasets and overcome the domain shift issue, e.g. different datasets have different noises and data distribution caused by various devices, we propose to use AdaptSegNet [62], a domain adaptation based semantic segmentation method, to learn the semantic structure extractor. Specifically, as illustrated in Fig. 3, we map the image in different datasets but with the same modality to their corresponding semantic structure with a U-Net [63], and add a discriminator to make the segmentation results from source and target datasets indistinguishable. For the fundus image, we use the DRIVE dataset [60] as the source, while for the OCT image, we use the Topcon dataset [61] as the source. The training loss to train the semantic structure extractor F_S is as follows:

$$L_{src} = - \sum S_{src} \log (F_s(I_{src}))$$

$$L_{tar} = \mathbb{E} [\log (1 - D_{da}(F_s(I_{tar}))) + \mathbb{E} [\log D_{da}(F_s(I_{src}))]$$

where S_{src} and I_{src} denote the ground-truth and the source image, respectively. I_{tar} denotes the target image, and D_{da} denotes the discriminator in AdaptSegNet [62].

Low-level Structure. To be a complement of the semantic structure, the low-level structure does not require additional human labeling and has abundant of details, but sometimes redundant for reconstruction. To be specific, we take the Canny edge as the low-level structure. However, the Canny edge detector [64] is not differentiable, thus we train a network F_c to extract the edge map from the input image with the supervision of the Canny edge detector. The training loss to train the low-level structure extractor F_c is as follows:

$$L_{edge} = - \sum E \log (F_c(I)),$$

where I and E denote the input image and its ground-truth, respectively.

B. Structure and Texture Feature Encoding Module

To encode the feature of the texture and two kinds of structure for subsequent memorization and image reconstruction, we use the encoder-decoder to learn the feature with an unsupervised manner. As shown in the Fig. 2 (a), to learn a representative texture feature z_t with an unsupervised manner, the encoded texture feature z_t from the texture encoder Enc_t is fed to the texture decoder Dec_t to get the reconstructed image \hat{I}_t. Then we minimize the $L1$-norm of the image reconstruction error as $L_{rec}^t = \|I - \hat{I}_t\|_1$. Similarly, the encoded semantic structure feature z_s^e from the structure encoder Enc_e are inputted to the structure decoder Dec_e to reconstruct the corresponding structure, respectively. Then we also minimize $L1$-norm of the structure reconstruction error to learn the structure feature z_s^e and z_s^e with an unsupervised manner. To be specific, the structure reconstruction losses L_{rec}^s and L_{rec}^t are for semantic structure and low-level structure, respectively. Therefore, we get the overall loss function of this module:

$$L_{enc} = \lambda_1 L_{rec}^t + \lambda_2 L_{rec}^s + \lambda_3 L_{rec}^c,$$

where $\lambda_1 = 0.5, \lambda_2 = 0.5, \lambda_3 = 0.5$ are the hyper-parameters.

C. Structure-Texture Correspondence Memory Module

It is natural for humans to infer the texture of a normal image from the corresponding normal structure. Motivated by this, we propose to memorize the correspondence between the normal structure and its texture to reconstruct the image. Since the memory only stores the normal structure-texture correspondence, and the memory is only updated in the training phase, it is expected that the stored correspondence does not work for the abnormal images during the test, leading to a large reconstruction error, which favors the anomaly detection. Specifically, the memory stores the correspondence as the key-value pairs, where the structure feature is the key while the texture feature is the value. Both the structure feature \hat{z}_s and the texture feature \hat{z}_t are from the same pixel. The key-value pairs stored in the memory can be described as:

$$M = \{ (\hat{z}_{s,1}, \hat{z}_{t,1}), \ldots, (\hat{z}_{s,j}, \hat{z}_{t,j}), \ldots, (\hat{z}_{s,k}, \hat{z}_{t,k}) \},$$

where k is the memory size. As illustrated in the Fig. 4, for a query structure feature z_s extracted from the previous structure and texture feature encoding module, the texture feature \hat{z}_t is retrieved for subsequent image reconstruction according to the nearest key structure feature \hat{z}_s in Euclidean distance as:

$$\hat{z}_t = \hat{z}_{t,j}, \text{ where } J = \arg \min_j \| z_s - \hat{z}_{s,j} \|_2, \quad j \in \{1, \ldots, k\}.$$
Encoding Module independently, two memories M_s and M_e are instantiated. M_s memorizes the correspondence between the semantic structure feature and the texture feature z_t while the correspondence between the low-level structure feature and the texture feature z_t is memorized in M_e.

Memory Update. To update the memory, we adopt a simple but effective strategy, i.e., first in first out (FIFO) algorithm [65]. In the FIFO algorithm, the first item that arrives at the memory is the first one to be updated.

Specifically, in the mini-batch training, let n denotes the batch size and $n < k$. We denote $(z_{s,i}, z_{t,i})$ as the i-th structure feature and texture feature in a batch, where $i \in \{1, 2, \cdots, n\}$. The memory block is updated as follows:

\[
(\hat{z}_{s,j}, \hat{z}_{t,j}) \leftarrow \begin{cases}
(z_{s,j-n}, \hat{z}_{t,j-n}), & j > n, \\
(z_{s,j}, z_{t,j}), & j \leq n,
\end{cases}
\]

(7)

where “\(\leftarrow\)” denotes the update operation.

D. Attention-guided Fusion Module

After the retrieval the two texture features from the memory, we feed them to the same texture decoder in Sec. III-B to get two reconstructed images, i.e., \hat{I}_s from the semantic structure and \hat{I}_e from the low-level structure. To get the final reconstructed image \hat{I}, a simple solution is to average \hat{I}_s and \hat{I}_e as $\hat{I} = (\hat{I}_s + \hat{I}_e)/2$. However, the effect of semantic structure and low-level structure for the final reconstructed image may be distinctive among different input images. Therefore, we propose to learn an attention weight W by the attention network F_{at}, which is conditioned on the input image I. Then we use the learned attention weight to fuse \hat{I}_s and \hat{I}_e to get the final reconstructed image. The generation of the attention weight W can be described as:

\[
W = \sigma(F_{at}(I)),
\]

(8)

where σ is a sigmoid function to normalize the attention weight to $[0, 1]$. After obtaining the learned attention weight, the final reconstructed image \hat{I} is obtained with the attention weight as:

\[
\hat{I} = W \otimes \hat{I}_s + (1 - W) \otimes \hat{I}_e,
\]

(9)

where \otimes denotes the element-wise multiplication. To compute the reconstruction loss, following [38][66], we use L_1 norm to measure the difference between the reconstructed image and the original image as follows:

\[
\mathcal{L}_{rec} = \|I - \hat{I}\|_1.
\]

(10)

To further improve the quality of the reconstructed image, we introduce a discriminator D from GAN [66][36] to penalize the reconstruction error for the reconstructed image \hat{I}. The adversarial loss \mathcal{L}_{adv} for training the reconstruction network is

\[
\mathcal{L}_{adv} = \mathbb{E}[\log(1 - D(\hat{I}))] + \mathbb{E}[\log D(I)].
\]

(11)

By minimizing \mathcal{L}_{adv}, the reconstruction network can be trained. To update discriminator, we follow [66][36] and maximize \mathcal{L}_{adv}.

E. Structure Regularization Module

We further append the structure extractors F_s and F_e from Sec. III-A on the reconstructed image as the structure regularizers. The structure regularizers are introduced to enforce the structure extracted from original image and that from reconstructed image to be the same, in this way, the original image can better reconstructed. The loss functions in this module are defined as follows:

\[
\mathcal{L}_{sr}^s = \|S - \hat{S}\|_1,
\]

\[
\mathcal{L}_{sr}^e = \|E - \hat{E}\|_1.
\]

(12)

The error between the semantic structures from the original image and the reconstructed image is also used for normality measurement in Sec. III-G.

F. Training and Objective Function

As aforementioned in Sec. III-A, we first train the semantic structure extractor Enc_s and low-level structure extractor Enc_e, respectively. As shown in Fig. 2 (a), we compute $\mathcal{L}_{enc} = \lambda_1 \mathcal{L}_{rec}^s + \lambda_2 \mathcal{L}_{sr}^s + \lambda_3 \mathcal{L}_{sr}^e$ to learn the feature of structure and texture to update the memory. Thus, we arrive at the objective function of our method to train the Structure and Texture Feature Encoding module and the Attention-guided Fusion module:

\[
\mathcal{L} = \mathcal{L}_{enc} + \lambda_{enc}\mathcal{L}_{rec} + \lambda_{adv}\mathcal{L}_{adv} + \lambda_{st}\mathcal{L}_{sr}^s + \lambda_{st}\mathcal{L}_{sr}^e
\]

(13)

where $\lambda_{enc}, \lambda_{adv}, \lambda_{st}$ are the hyper-parameters. We analyse the effect of these hyper-parameters in Sec. IV-C5 (Hyper-parameters Analysis).

G. Anomaly Detection on Test Data Considering Structure

Previous methods detect the anomaly by the image error [9][10][11][12] as:

\[
\mathcal{A}_{img} = \|I - \hat{I}\|_1.
\]

(14)

A higher image error \mathcal{A}_{img} for the test image indicates that it is more likely to be abnormal. However, we argue that the structure (especially the semantic structure) is beneficial for detecting the anomaly rather than solely relying on the image, as illustrated in Fig. 1. We define the semantic structure error as:

\[
\mathcal{A}_{struct} = \|S - \hat{S}\|_1.
\]

(15)

As illustrated in Fig. 2 (b), we consider the image error \mathcal{A}_{img} and the semantic structure error \mathcal{A}_{struct} jointly for anomaly detection as:

\[
\mathcal{A} = (1 - \gamma)\mathcal{A}_{img} + \gamma\mathcal{A}_{struct}
\]

\[
= (1 - \gamma)\|I - \hat{I}\|_1 + \gamma\|S - \hat{S}\|_1,
\]

(16)

where γ is a hyper-parameter used to balance the image error and the semantic structure error for anomaly measurement. The reason for not considering the low-level structure error is that the low-level structure is noisy in the background regions, which may be unfavorable for anomaly detection.
IV. EXPERIMENTS

A. Experimental Setup

In this section, we introduce the network architectures, training details, and evaluation metric.

1) Network Architectures: Let C_k denote a Convolution-BatchNorm-ReLU layer with k filters. All convolutional operations are 3×3 spatial filters applied with stride 1, which will produce a feature map that has the same spatial size with the input feature map. The scale factor of both the max-pooling operations are the same. All of the encoders contain four max-pooling layers, while all of the decoders contain four up-sampling layers. Specifically, the encoder architecture is $C_{64} - C_{64} - M_p - C_{128} - C_{128} - M_p - C_{256} - C_{256} - M_p - C_{512} - C_{512} - M_p - C_{512} - C_{512}$, and the decoder architecture is $U_p - C_{512} - C_{512} - U_p - C_{256} - C_{256} - U_p - C_{128} - C_{128} - U_p - C_{64} - C_{64} - m$, where m denotes the channel number of original image. The network architecture of $\mathbf{F}_{\text{anomaly}}$ is: $C_{64} - C_{64} - M_p - C_{128} - U_p - C_{64} - C_{1}$. The network architectures of \mathbf{F}_{s} and \mathbf{F}_{e} are the U-Net [63], and the implementation details of \mathbf{F}_{s} and \mathbf{F}_{e} follow [67].

2) Training Details: To train the proposed network, the batch size is 8 and the input image size is 224×224. The optimizers for the generator and the discriminator are both Adam [68], we set the learning rate to 0.001, $\beta_1 = 0.1$ and $\beta_2 = 0.9$. In the memory, we set the memory size $k = 2048$. We train our model for 800 epochs. We implement our method with the PyTorch [69] on the NVIDIA TITAN V GPU.

3) Evaluation Metric: Following previous work [70][8], we calculate the Area Under Receiver Operation Characteristic (AUC), for normal/abnormal classification by gradually changing the threshold of A, introduced in Sec. III-G. A higher AUC indicates that the performance of the method is better.

B. Anomaly Detection on the Industrial Inspection Images

1) Dataset: We apply our method on the MVTec AD dataset [7], which is a very challenging and comprehensive dataset for anomaly detection in the industrial inspection images. This dataset contains 5 texture categories (i.e., carpet, grid, leather, tile and wood) images and 10 object categories (i.e., bottle, cable, capsule, hazelnut, metal nut, pill, screw, toothbrush, transistor and zipper) images. As there is no annotation of semantic structure for these 15 categories images, only the low-level structure is used in our method. Therefore, only the image error A_{img} shown in Equation (14) is used for AUC computation.

<table>
<thead>
<tr>
<th>Categories</th>
<th>AE (SSIM)</th>
<th>AE (L2)</th>
<th>AioGan</th>
<th>CFDE</th>
<th>Deep</th>
<th>Cycle</th>
<th>VAE-</th>
<th>GANomaly</th>
<th>TI</th>
<th>P-Net</th>
<th>Our Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpet</td>
<td>0.69</td>
<td>0.38</td>
<td>0.34</td>
<td>0.20</td>
<td>-</td>
<td>0.04</td>
<td>0.01</td>
<td>0.23</td>
<td>0.29</td>
<td>0.14</td>
<td>0.28</td>
</tr>
<tr>
<td>Grid</td>
<td>0.88</td>
<td>0.83</td>
<td>0.04</td>
<td>0.02</td>
<td>-</td>
<td>0.36</td>
<td>0.04</td>
<td>0.41</td>
<td>0.01</td>
<td>0.59</td>
<td>0.65</td>
</tr>
<tr>
<td>Leather</td>
<td>0.71</td>
<td>0.67</td>
<td>0.34</td>
<td>0.74</td>
<td>-</td>
<td>0.09</td>
<td>0.12</td>
<td>0.31</td>
<td>0.98</td>
<td>0.32</td>
<td>0.63</td>
</tr>
<tr>
<td>Tile</td>
<td>0.04</td>
<td>0.23</td>
<td>0.18</td>
<td>0.14</td>
<td>-</td>
<td>0.14</td>
<td>0.09</td>
<td>0.19</td>
<td>0.11</td>
<td>0.23</td>
<td>0.27</td>
</tr>
<tr>
<td>Wood</td>
<td>0.36</td>
<td>0.29</td>
<td>0.14</td>
<td>0.47</td>
<td>-</td>
<td>0.19</td>
<td>0.11</td>
<td>0.32</td>
<td>0.51</td>
<td>0.37</td>
<td>0.44</td>
</tr>
<tr>
<td>Bottle</td>
<td>0.15</td>
<td>0.22</td>
<td>0.05</td>
<td>0.07</td>
<td>-</td>
<td>0.09</td>
<td>0.11</td>
<td>0.13</td>
<td>-</td>
<td>0.43</td>
<td>0.45</td>
</tr>
<tr>
<td>Cable</td>
<td>0.93</td>
<td>0.86</td>
<td>0.86</td>
<td>0.78</td>
<td>0.86</td>
<td>0.76</td>
<td>0.73</td>
<td>0.82</td>
<td>-</td>
<td>0.99</td>
<td>0.97</td>
</tr>
<tr>
<td>Capsule</td>
<td>0.01</td>
<td>0.05</td>
<td>0.13</td>
<td>-</td>
<td>-</td>
<td>0.02</td>
<td>0.05</td>
<td>0.14</td>
<td>-</td>
<td>0.16</td>
<td>0.25</td>
</tr>
<tr>
<td>Hazeznut</td>
<td>0.09</td>
<td>0.11</td>
<td>0.04</td>
<td>0.00</td>
<td>-</td>
<td>0.04</td>
<td>0.19</td>
<td>0.51</td>
<td>-</td>
<td>0.64</td>
<td>0.58</td>
</tr>
<tr>
<td>Metal Nut</td>
<td>0.04</td>
<td>0.86</td>
<td>0.76</td>
<td>0.82</td>
<td>0.75</td>
<td>0.43</td>
<td>0.46</td>
<td>0.69</td>
<td>-</td>
<td>0.79</td>
<td>0.82</td>
</tr>
<tr>
<td>Pill</td>
<td>0.07</td>
<td>0.25</td>
<td>0.17</td>
<td>0.00</td>
<td>-</td>
<td>0.29</td>
<td>0.01</td>
<td>0.17</td>
<td>-</td>
<td>0.58</td>
<td>0.54</td>
</tr>
<tr>
<td>Screw</td>
<td>0.05</td>
<td>0.34</td>
<td>0.01</td>
<td>0.00</td>
<td>-</td>
<td>0.17</td>
<td>0.02</td>
<td>0.24</td>
<td>-</td>
<td>0.32</td>
<td>0.41</td>
</tr>
<tr>
<td>Toothbrush</td>
<td>0.04</td>
<td>0.51</td>
<td>0.07</td>
<td>0.00</td>
<td>-</td>
<td>0.13</td>
<td>0.10</td>
<td>0.48</td>
<td>-</td>
<td>0.63</td>
<td>0.59</td>
</tr>
<tr>
<td>Transistor</td>
<td>0.02</td>
<td>0.22</td>
<td>0.08</td>
<td>0.03</td>
<td>-</td>
<td>0.20</td>
<td>0.05</td>
<td>0.34</td>
<td>-</td>
<td>0.24</td>
<td>0.29</td>
</tr>
<tr>
<td>Zipper</td>
<td>0.10</td>
<td>0.13</td>
<td>0.01</td>
<td>0.00</td>
<td>-</td>
<td>0.05</td>
<td>0.04</td>
<td>0.21</td>
<td>-</td>
<td>0.34</td>
<td>0.38</td>
</tr>
</tbody>
</table>

| Mean | 0.32 | 0.33 | 0.09 | 0.13 | - | 0.15 | 0.09 | 0.27 | - | 0.41 | 0.45 |
2) Quantitative Performance Evaluation: We compare our method with Auto-Encoder (AE) with L2 loss and SSIM loss [7], AnoGAN [8], Texture Inspection (TI) [71], CNN Feature Dictionary (CFD) [72], Cycle-GAN [73], Deep SVDD [28], VAE-GAN [9], GANomaly [38] and P-Net [20]. The results of AE (SSIM), AE (L2), AnoGAN [8], CFD [72], and TI [71] are adopted from [7] directly.

Besides the AUC that evaluates the image-level anomaly detection performance, we also report the region overlap between the predicted anomaly region and the ground-truth as a evaluation metric to evaluate the anomaly segmentation (pixel-level anomaly detection) performance of our model following [7]. We segment a series of predicted anomaly region by comparing the error between the normal images and the corresponding reconstructed images with a increased threshold. The searching of the threshold is not stopped until the area of predicted anomaly region just lower than the minimum defect area which is pre-defined as a constant and the threshold of the stopping point is utilized for segmenting the anomaly region in the test phase. The results are reported in Table I. We can see that our method achieves the best performance in terms of the average AUC and average anomaly region overlap on the average of all categories, which validates that our proposed MemSTC-Net is effective on industrial inspection images.

3) Qualitative Results: In this section, we analyse the qualitative reconstruction performance on different categories of images in MVTec AD dataset. As shown in Fig. 5 and Fig. 6, we can observe that the abnormal region can not be reconstructed reasonably. For example, the abnormal regions on the hazelnut are poorly reconstructed. We can also find that the high frequency signal in the normal region is also distorted in the reconstructed images, e.g., metal conductors in the cable and the “rough surface” of the pill. This phenomenon is more obvious in the texture images (Fig. 6) than in the object images (Fig. 5), as the surface of the texture images is pretty rough. More high frequency signals make the reconstruction error higher in the normal regions for the texture images, such as the carpet and grid. Thus more normal regions are segmented as abnormal regions in the texture images. As a result, the performance of our method in the texture images is relatively worse than in the object images.

C. Anomaly Detection on the Medical Images

1) Datasets: The datasets used in previous retinal image anomaly detection work [8][37][47] are not released, therefore, we evaluate our proposed method with a local hospital dataset [57] and a publicly available dataset [58].

Fundus Multi-disease Diagnosis Dataset (iSee) [57]. Previous retinal fundus datasets usually contain only one or two types of disease [74][75], but in the clinical diagnosis, many eye diseases can be observed in the retinal fundus image. Therefore, we use the iSee dataset [57] that contains multiple eye disease to evaluate the sensitivity of the proposed method on multiple diseases. This dataset comprises of 10000 retinal fundus images, including diabetic retinopathy (DR), age-related macular degeneration (AMD), glaucoma, pathological myopia (PM), and some other types of eye diseases. To evaluate the effectiveness of MemSTC-Net for image anomaly detection on this dataset, we use 4000 normal images as the training set, and we use the remaining 3000 normal images and
3000 abnormal images as our test set. Among the abnormal images in the test set, 480 images are with DR, 700 images are with AMD, 420 images are with glaucoma, 800 images are with PM and 600 images are with other types of eye diseases.

Retinal Edema Segmentation Challenge Dataset (RESC) [58]. Retinal edema is the retinal disease which can cause blurry vision and greatly affect the patient's life quality. As OCT images can be used to assist clinicians in diagnosing retinal edema, we utilize RESC dataset, which is a OCT based retinal edema segmentation dataset, for evaluation. Following the standard training/validating split of the dataset, we use the normal images in the original training set to train the model, and use all test images for performance evaluation.

2) Performance Evaluation: We compare our method with VAE-GAN [9] proposed for Brain MRI images, AnoGAN [10] proposed for retinal OCT images, GANomaly [38] for X-ray security images, and Auto-Encoder based anomaly detection [11]. We also compare MemSTC-Net with image-to-image translation networks, including Pix2Pix [66] and Cycle-GAN [73]. For Pix2Pix [66] and Cycle-GAN [73], we use the original image and structures extracted with domain adaptation method to train the network, and use the same measurement of anomaly score as ours for anomaly detection. Besides, as the use of cross-modality is a type of self-supervision, we compare MemSTC-Net with the well-known self-supervised image anomaly detection method, which using geometric transformations [55]. We use the official implementation 1 provided in [55]. As reported in Table II, the proposed MemSTC-Net outperforms all baseline methods on the two medical datasets.

We further compute the average anomaly score (mean ± standard deviation) for both the normal images and the abnormal images on the fundus dataset with Equation (16). The gap of these two scores is also calculated to measure the ability of our method and other baselines to discriminate the normal and the abnormal images. A larger gap means the normal and the abnormal images can be more easily separated. The results reported in Table III show that our method achieves a larger gap than other baseline methods and our proposed method, which validates the assumption that the AE has a relatively low reconstruction error on abnormal images and consequently they are less sensitive to anomalies.

We also report the AUC results of our method for the five sub-classes in the iSee dataset (i.e., AMD, PM, glaucoma, DR, and other disease classes) in Table IV. We can observe that the proposed MemSTC-Net outperforms P-Net on three sub-classes (i.e., AMD, glaucoma and other types of disease).
The residual map is fused by original image \(I \) and the absolute difference between original image and its reconstructed image \(\hat{I} \). "No correspondence encoded" denotes only taking semantic structure as input, in this way, there is no structure-texture correspondence encoded. The P-Net w/o SR means that encoding structure-texture relation with P-Net, and the MemSTC-Net w/o SR means that encoding structure-texture correspondence with the proposed STCM module.

Table III

<table>
<thead>
<tr>
<th>Method</th>
<th>Anomaly Score</th>
<th>gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glaucoma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auto-Encoder</td>
<td>0.737 ± 0.092</td>
<td>0.135</td>
</tr>
<tr>
<td>VAE-GAN [9]</td>
<td>0.651 ± 0.077</td>
<td>0.191</td>
</tr>
<tr>
<td>GANomaly [38]</td>
<td>0.717 ± 0.082</td>
<td>0.196</td>
</tr>
<tr>
<td>P-Net [20]</td>
<td>0.823 ± 0.073</td>
<td>0.224</td>
</tr>
<tr>
<td>MemSTC-Net</td>
<td>0.767 ± 0.049</td>
<td>0.258</td>
</tr>
</tbody>
</table>

Table IV

<table>
<thead>
<tr>
<th>Method</th>
<th>AMD</th>
<th>PM</th>
<th>Glaucoma</th>
<th>DR</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auto-Encoder [11]</td>
<td>0.5463</td>
<td>0.7479</td>
<td>0.5604</td>
<td>0.6002</td>
<td>0.5479</td>
</tr>
<tr>
<td>AnoGAN [8]</td>
<td>0.5630</td>
<td>0.7499</td>
<td>0.5731</td>
<td>0.5704</td>
<td>0.6412</td>
</tr>
<tr>
<td>VAE-GAN [9]</td>
<td>0.5593</td>
<td>0.8412</td>
<td>0.6149</td>
<td>0.6590</td>
<td>0.7961</td>
</tr>
<tr>
<td>GANomaly [38]</td>
<td>0.5713</td>
<td>0.8336</td>
<td>0.6056</td>
<td>0.6627</td>
<td>0.8013</td>
</tr>
<tr>
<td>P-Net [20]</td>
<td>0.5688</td>
<td>0.8726</td>
<td>0.6103</td>
<td>0.6830</td>
<td>0.8069</td>
</tr>
<tr>
<td>MemSTC-Net</td>
<td>0.6382</td>
<td>0.8256</td>
<td>0.6532</td>
<td>0.6196</td>
<td>0.9223</td>
</tr>
</tbody>
</table>

3) Comparison between MemSTC-Net and P-Net: The P-Net [20] reconstructs the image from the fusion of semantic structure feature and the texture feature. The texture feature is extracted from the original image via a texture Auto-Encoder. However, since the input of texture encoder is the original image, the texture encoder probably introduces abnormal information for abnormal image reconstruction in the test phase, which is unfavorable for anomaly detection. Thus in this paper, the proposed MemSTC-Net removes the texture encoder in P-Net and introduces a STCM module between the semantic structure and the reconstructed image to memorize the structure-texture correspondence for the normal images. To investigate the effectiveness of the proposed STCM module, we conduct quantitative and qualitative experiments, which are shown in Table V and Fig. 7, respectively.

First, we show that both image and semantic structure are necessary for anomaly detection. As reported in Table V, the result of P-Net w/o SR (i.e., encoding the structure-texture relation with P-Net) is better than that with the single input (i.e., only texture or semantic structure feature for image reconstruction) based reconstruction. In particular, the results of P-Net w/o SR on iSee dataset arises 7% and 3% on AUC compared with the results of single feature for reconstruction.

Then, we show the effectiveness of STCM module, which capture the structure-texture correspondence by a memory. Note that, to fairly compared with P-Net w/o SR, the MemSTC-Net w/o SR (i.e., encoding structure-texture correspondence with STCM module) here does not use the low-level structure. As reported in Table V, the result of MemSTC-Net w/o SR is better than that with P-Net w/o SR.

Table V

<table>
<thead>
<tr>
<th>Method</th>
<th>RESC</th>
<th>iSee</th>
</tr>
</thead>
<tbody>
<tr>
<td>texture feature [20]</td>
<td>0.8219</td>
<td>0.6487</td>
</tr>
<tr>
<td>semantic structure feature [20]</td>
<td>0.8277</td>
<td>0.6914</td>
</tr>
<tr>
<td>P-Net w/o SR [20]</td>
<td>0.8518</td>
<td>0.7196</td>
</tr>
<tr>
<td>MemSTC-Net w/o SR</td>
<td>0.8046</td>
<td>0.7767</td>
</tr>
</tbody>
</table>

The qualitative comparison also validates the effectiveness of the proposed STCM module. From Fig. 7, we can observe that: i) when only taking the semantic structure as input
(i.e., there is no structure-texture correspondence encoded), the texture (e.g., the area of macular and optic disc) cannot be well reconstructed. This is because of the lack of texture information; ii) in the results of P-Net w/o SR, the reconstruction of normal region is better than that without structure-texture correspondence encoded. As illustrated in the yellow circles, the reconstruction result of normal regions (e.g., macular and optic disc area) of P-Net w/o SR is better; iii) compared with P-Net w/o SR, the reconstruction of the abnormal region (circled with red color) with MemSTC-Net w/o SR is more like the normal. This enlarges the reconstruction error for the abnormal images, and boost the performance of anomaly detection. These qualitative results validate the effectiveness of replacing the texture encoder with proposed STCM module to encode the structure-texture correspondence.

4) Ablation Study: In the previous sections, comprehensive comparisons between the previous P-Net and the proposed MemSTC-Net have proved the effectiveness of the major components of the proposed method. This section conducts several ablation studies on the iSee and RESC dataset to explore other different components in detail.

Fig. 8. The qualitative results of domain adaptation (DA) for OCT images. The structure of target image is well extracted well with DA.

Domain adaptation. Since there exists domain discrepancy between the source images and the target images, if we train a semantic structure extraction model without domain adaptation (DA), the quality of the semantic structure (third column in Fig. 8) is terrible for image reconstruction. The quantitative results also validate the necessity of DA. As reported in Table VI, by comparing the results in row 1 and row 2, it can be observed that the performance without using DA decrease enormously, i.e., 24% AUC and 16% AUC on both datasets.

The Ablation Studies of Domain Adaptation and Structure Selection.

<table>
<thead>
<tr>
<th>Semantic Structure</th>
<th>Low-level Structure</th>
<th>AUC</th>
</tr>
</thead>
<tbody>
<tr>
<td>with DA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td>0.6480</td>
</tr>
<tr>
<td>✓</td>
<td></td>
<td>0.5791</td>
</tr>
<tr>
<td>without DA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓</td>
<td>✓</td>
<td>0.8846</td>
</tr>
<tr>
<td>✓</td>
<td>x</td>
<td>0.7367</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>0.8126</td>
</tr>
<tr>
<td></td>
<td>✓</td>
<td>0.6965</td>
</tr>
</tbody>
</table>

The improvement with STCM module. The proposed STCM module memorizes the structure-texture correspondence by storing the key-value pairs, where the structure feature is the key and the texture feature is the value. To validate the effectiveness of this design, we compare the STCM module with a simple baseline without the memory module. In this baseline (denoted as ‘Concat’), the structure feature and the retrieved texture feature are concatenated as one entry that is input to the following decoder. As reported in Table VII, it can be observed that: i) using STCM module for both semantic structure and low-level structure improve the performance; ii) memorizing semantic structure-texture correspondence is more effective than memorizing low-level structure-texture correspondence.

The Results With and Without STCM Module.

<table>
<thead>
<tr>
<th>M_s</th>
<th>M_t</th>
<th>RESC</th>
<th>iSee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concat</td>
<td>Concat</td>
<td>0.8368</td>
<td>0.6661</td>
</tr>
<tr>
<td>STCM</td>
<td>Concat</td>
<td>0.8984</td>
<td>0.7291</td>
</tr>
<tr>
<td>Concat</td>
<td>STCM</td>
<td>0.8455</td>
<td>0.6893</td>
</tr>
<tr>
<td>STCM</td>
<td>STCM</td>
<td>0.9018</td>
<td>0.7488</td>
</tr>
</tbody>
</table>

Besides using z_s as key and z_t as value, there are three other cases concatenating z_s and z_t as one item in the memory: i) concatenating z_s and z_t (denoted as z_s ⊕ z_t) as the key; ii) concatenating z_s and z_t as the value; iii) concatenating z_s and z_t both as the key and the value. The results are reported in Table VIII, and these other cases do not bring improvement.

Study of the Concatenating Manners in the Memory.

<table>
<thead>
<tr>
<th>key</th>
<th>value</th>
<th>RESC</th>
<th>iSee</th>
</tr>
</thead>
<tbody>
<tr>
<td>z_s ⊕ z_t</td>
<td>z_t</td>
<td>0.8963</td>
<td>0.7403</td>
</tr>
<tr>
<td>z_s</td>
<td>z_s ⊕ z_t</td>
<td>0.8949</td>
<td>0.7412</td>
</tr>
<tr>
<td>z_s ⊕ z_t</td>
<td>z_s ⊕ z_t</td>
<td>0.9007</td>
<td>0.7361</td>
</tr>
<tr>
<td>z_s</td>
<td>z_t</td>
<td>0.9018</td>
<td>0.7488</td>
</tr>
</tbody>
</table>

The improvements with attention-guided fusion module. In our proposed method, rather than simply averaging the reconstructed images with the two types of structure, we employ an attention block to learn a weight to fuse the two reconstructed images automatically. The results are reported in Table IX, the proposed fusion strategy with the attention outperforms the simply averaging by 2.9% AUC and 0.9% AUC on RESC and iSee dataset, respectively.

The improvements with SR module. The SR module contains two structure consistency losses, i.e., L_s^* constraining the consistency between S and Š, and L_t^* constraining the consistency between E and Ŕ. The SR module behaves like
a regularizer to enforce the consistency between the input image and the reconstructed image. We report the results of P-Net [20] and our MemSTC-Net trained with and without SR module. As reported in Table X, the performance of MemSTC-Net is improved with the SR module, which verifies the effectiveness of enforcing the consistency between the input image and the reconstruction for image anomaly detection. In addition, the performance improvements on REST is large than iSee, which shows that SR is more effective on the OCT modality than that on fundus modality.

Table IX

<table>
<thead>
<tr>
<th></th>
<th>RESC</th>
<th>iSee</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_s</td>
<td>0.8846</td>
<td>0.7367</td>
</tr>
<tr>
<td>I_e</td>
<td>0.8126</td>
<td>0.6965</td>
</tr>
<tr>
<td>$(I_s + I_e)/2$</td>
<td>0.8733</td>
<td>0.7394</td>
</tr>
<tr>
<td>proposed</td>
<td>0.9018</td>
<td>0.7488</td>
</tr>
</tbody>
</table>

Table X

<table>
<thead>
<tr>
<th>Method</th>
<th>RESC</th>
<th>iSee</th>
</tr>
</thead>
<tbody>
<tr>
<td>MemSTC-Net w/o SR</td>
<td>0.9018</td>
<td>0.7488</td>
</tr>
<tr>
<td>MemSTC-Net</td>
<td>0.9385(Δ=+3.7%)</td>
<td>0.7568(Δ=+0.8%)</td>
</tr>
</tbody>
</table>

5) **Hyper-parameters Analysis:** In this section, we conduct several experiments on the iSee and RESC dataset to analyse the hyper-parameters during the training and test.

Analysis of the hyper-parameters in objective function.

During the optimization, we use the objective function in Equation (13) to train the proposed model. It is essential to balance the weights between reconstruction loss (L_{rec}), adversarial loss (L_{adv}), and the structure regularization items (L^s and L^e). To explore the influence of these hyper-parameters (λ_{rec}, λ_{adv}, λ^s_r, λ^e_r), we conduct following experiments:

- i) fix $\lambda_{adv} = 0.5$, $\lambda^s_r = 0.05$, $\lambda^e_r = 0.01$, and change λ_{rec};
- ii) fix $\lambda_{rec} = 1$, $\lambda^s_r = 0.05$, $\lambda^e_r = 0.01$, and change λ_{adv};
- iii) fix $\lambda_{rec} = 1$, $\lambda_{adv} = 0.5$, $\lambda^s_r = 0.01$, and change λ^e_r;
- iv) fix $\lambda_{rec} = 1$, $\lambda_{adv} = 0.5$, $\lambda^s_r = 0.05$, and change λ^e_r.

Fig. 9 (a) and (b) show that a larger $\lambda_{rec}/\lambda_{adv}$ do not always improve AUC. As shown in Fig. 9 (c) and (d), the effect of two structure regularization items is different on different datasets. For example, the effect of λ^s_r on the iSee dataset is more robust than that on the RESC dataset. On the contrary, the effect of λ^e_r on the RESC dataset is more robust than that on the iSee dataset. Empirically, we set $\lambda_{rec} = 1$, $\lambda_{adv} = 0.1$, $\lambda^s_r = 0.05$, $\lambda^e_r = 0.01$ on all datasets in our experiments.

Evaluation of the memory size (k).

Besides the hyper-parameters in objective functions, the memory size is also important for our model. We gradually change the memory size in {512, 1024, 2048, 4096}, and the results are shown in Fig. 10. It can be found that: i) when $k = 2048$ the model achieves the best performance on both RESC (OCT) and iSee (fundus) dataset. Therefore, we set $k = 2048$ in all experiments; ii) when $k > 2048$ or $k < 2048$, the performance descends. On the one hand, if the memory size is too small, the STCM module is incapable to memorize the structure-texture correspondence in normal images, leading to poor reconstruction on the normal images. On the other hand, if the memory size is too big, the capacity of the model becomes high, leading to good reconstruction on the abnormal images.

Additionally, the fluctuation of AUC results on the iSee dataset is larger than that on the RESC dataset. This is because the pattern in the fundus image is more complex than the pattern in the OCT dataset, leading to that the model is more sensitive to the fundus than that to OCT.

Fig. 9. The AUC results versus different weights of the hyper-parameters. (a) and (b) show that a larger $\lambda_{rec}/\lambda_{adv}$ do not always improve AUC. (c) and (d) show that the effect of two structure regularization items is different on different datasets.

Evaluation of γ.

In the test phase, we use Equation (16) to measure the anomaly score. $\gamma = 0$ denotes that only image error $A_{img} = ||I - \hat{I}||_1$ is used for anomaly detection, and $\gamma = 1$ means only semantic structure error $A_{struct} = ||S - \hat{S}||_1$ is used for anomaly detection. We vary γ and show the results in Table XI. We can see that the performance of anomaly detection using only A_{img} is worse than using only A_{struct}. The possible reason is that the semantic structure is more evident than image for anomaly detection, which agrees with the practice of clinicians. Combining A_{img} and A_{struct} together leads to a better performance. Our proposed method achieves the best performance when $\gamma = 0.8$ on RESC. For iSee dataset, the best performance is obtained when $\gamma = 0.4$.

6) **Multiple Cycles in MemSTC-Net:** We can find that the reconstruction results for the abnormal images are worse than the normal images and this is why we can detect the anomaly.

Fig. 10. The AUC results on RESC (OCT) and iSee (fundus) with different memory sizes. When $k = 2048$ the model achieves the best performance on both RESC and iSee dataset.
This motivates us to feed the reconstructed image as the input to network again to get a reconstructed image and this process can be conducted for multiple cycles. Therefore, the reconstruction result for the abnormal images become worse and worse, which facilitate the anomaly detection. In Fig. 11, we show the qualitative effect of more cycles in test phase and we report the quantitative results in Table XII. In the multiple cycles in test phase, the abnormal lesion becomes more and more similar to normal patterns, which is a little like “anomalies repairing”. Such phenomenon is more obvious in the semantic structure map. For the normal image, both the image and structure map remain the same even after multiple cycles. Thus more cycles would enlarge the reconstruction error for abnormal images, and retain the same reconstruction error for normal ones, which explains the phenomenon that more cycles in test phase improve the anomaly detection. Except for this section, we only conduct one cycle in the test for a fair comparison with other baselines.

D. Unseen Disease Discovery on the Retinal Fundus Images

In the real clinical scenario, clinicians can recognize the images with diseases that they have never seen before. It is desirable to achieve this capability in an intelligent diagnosis system. This task is termed as unseen disease discovery [76], where the test set contains the images of disease categories not appeared in training set.

To evaluate the performance of our method under such setting, we use 4000 normal images and 350 images with AMD, 400 images with PM, 210 images with glaucoma, and 240 images with DR in our iSee dataset as the training set. We use the remaining images (i.e., 600 images with other types of eye disease) for unseen disease discovery in the test phase. We define normal, AMD, PM, glaucoma and DR as the seen classes and the other diseases as the unseen classes.

We report the AUC performance of different methods under such setting in Table XIII. We can see that our method outperforms other methods. The reason for the success of our method is that our network can memorize the correspondence between the structure and the texture. For the seen images with certain diseases in the training set, the network can utilize the structure-texture correspondence for reconstruction. However, the memorized structure-texture correspondence of the seen diseases in the training phase cannot generalize to the unseen diseases in the test phase, leading to a large reconstruction error, which can be used for unseen disease discovery.

V. Conclusion

In this work, we propose a novel Structure-Texture Correspondence Memory Network for image anomaly detection. The motivation of our method is that the correlation between the structure and texture in normal images is stronger than that in abnormal images, thus the normal texture can be inferred from the normal structure while it is hard to infer the abnormal texture from the abnormal structure. Based on this observation, we reconstruct the image from the structure-texture correspondence that is stored in the proposed Structure-Texture Correspondence Memory module. Besides, we extracts two types of structures (i.e., the semantic structure and the low-level structure) from the original images. The reconstructions from these two types of structures are fused together to get the final reconstructed image in the Attention-guided Fusion module. At last, we extract the structures from the reconstructed images, and minimizing the difference between the structures extracted from original image and that from the reconstructed image in training. In test, we combine the image reconstruction error and semantic structure error as a measurement for image anomaly detection. Extensive experiments validate the effectiveness of our approach.

VI. Acknowledge

The work was supported by National Key R&D Program of China (2018AAA0100704), NSFC #61932020, Science and Technology Commission of Shanghai Municipality (Grant No. 20ZR1436000), Guangdong Provincial Department of
Education (2020ZDXZ3043), Shenzhen Natural Science Fund (JCY120200109140820699), the Stable Support Plan Program (20200925174052004), and “Shuguang Program” supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission. We would like to thank the Editor-in-Chief, associate editor, and all anonymous reviewers for their valuable and constructive comments.

REFERENCES

