
SPCR: SEMI-SUPERVISED POINT CLOUD INSTANCE SEGMENTATION WITH
PERTURBATION CONSISTENCY REGULARIZATION

Yongbin Liao1, Hongyuan Zhu2, Tao Chen1∗, Jiayuan Fan3

1 School of Information Science and Technology, Fudan University
2 Agency for Science, Technology and Research

3 Academy for Engineering and Technology, Fudan University

ABSTRACT

Point cloud instance segmentation is steadily improving with
the development of deep learning. However, current progress
is hindered by the expensive cost of collecting dense point
cloud labels. To this end, we propose the first semi-supervised
point cloud instance segmentation architecture, which is
called semi-supervised point cloud instance segmentation
with perturbation consistency regularization (SPCR). It is
capable to alleviate the data-hungry bottleneck of existing
strongly supervised methods. Specifically, SPCR enforces
an invariance of the predictions over different perturbations
applied to the input point clouds. We firstly introduce var-
ious perturbation schemes on inputs to force the network
to be robust and easily generalized to the unseen and unla-
beled data. Further, perturbation consistency regularization
is then conducted on predicted instance masks from various
transformed inputs to provide self-supervision for network
learning. Extensive experiments on the challenging ScanNet
v2 dataset demonstrate our method can achieve competi-
tive performance compared with the state-of-the-art of fully
supervised methods.

Index Terms— Point cloud, Instance segmentation,
Semi-supervised learning

1. INTRODUCTION

With the increasing availability and affordability of depth sen-
sors, 3D scene understanding has attracted numerous atten-
tion and has been widely applied in many applications such as
virtual reality and autonomous driving. Point cloud instance
segmentation is one of the fundamental and challenging tasks
in 3D computer vision that requires to simultaneously predict
semantic and instance labels for each object in one scene.

In recent years, many deep learning based methods [1–
12] for point cloud instance segmentation have emerged and
boosted the performance in a large margin. These methods
could be divided into two categories. One way is to directly
group the input point cloud into object instances according
to the learned point embeddings. SGPN [2] groups points

∗ Tao Chen is the corresponding author

according to the similarity matrix measured by the semantic
predictions. ASIS [7] and BAN [8] leverage discriminative
loss to separate different objects based on the learned feature
embeddings. Occuseg [4] introduces an occupancy signal to
complement point embeddings for instance clustering. The
other category is first to generate instance candidates and fur-
ther mine precise instance contours within candidate regions.
GSPN [3] predicts instances according to the object proposals
produced by its proposed generative shape proposal network.
3D-BoNet [5] directly generates bounding box proposals and
foreground instance masks simultaneously. 3D-MPA [6] out-
puts the final predictions by aggregating multi-proposals pro-
duced through object center voting. PointGroup [1] conducts
its proposed clustering algorithm on both original point set
and offset-shifted point coordinate set for instance prediction.

However, most of the existing methods for point cloud
instance segmentation are fully supervised and severely rely
on dense point-level annotations, which are always costly for
collection. Therefore, the applications of these methods are
limited in the real scenarios. There are a lot of methods trying
to tackle this problem. Semi-supervised learning is a promis-
ing choice which requires only few labeled data.

Many efforts have been made to adopt semi-supervised
learning on 2D images. For example, The Π-model [13]
encourages a consistency over two different perturbations ap-
plied to one input image. Mean-teacher [14] enforces similar
predictions of student network and teacher network whose
weights are transferred from the student. VAT [15] improves
the prediction by approximating the perturbations which in-
fluence model’s results the most. FixMatch [16] demonstrates
the importance of strong and varied perturbations. Inspired by
the recent success of semi-supervised learning on 2D images,
there are also some attempts for 3D scene understanding.
Tang et al. [17] propose a transferable semi-supervised 3D
object detection from RGB-D input through cross-category
learning which requires 2D labels for all object classes. SESS
[18] takes pure point cloud as input and constructs a semi-
supervised architecture leveraging mean-teacher network.
However, these methods merely pay attention to 3D object
detection. There is no consideration taken into point cloud in-
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Fig. 1. The network architecture of our proposed SPCR. Given the original input point cloud (either labeled or unlabeled)
and their transformed point cloud, we first generate instance candidates through the siamese network. The predictions of the
original point cloud are then transformed with the same perturbation Φ. Finally, these instance predictions are optimized by the
supervised loss and our proposed perturbation consistency regularization mechanism.

stance segmentation, a more challenging task which requires
more detailed point-level annotations.

Considering the promising potential of semi-supervised
learning on point cloud instance segmentation task, we pro-
pose SPCR, a self-supervised perturbation consistency reg-
ularization mechanism for semi-supervised point cloud in-
stance segmentation. The perturbation consistency regular-
ization is to enforce an invariance of the predictions over some
perturbations applied to the input point cloud. As a result, we
do not need a large amount of well-annotated training samples
since unlabeled data could provide self-supervision through
perturbation consistency themselves, which largely reducing
the cost for data annotations. Specifically, we first propose
multiple perturbation schemes for the input point cloud to
learn the underlying knowledge of unlabeled data to full ad-
vantage. Furthermore, our perturbation consistency regular-
ization will guide the model to be consistent with its predic-
tions under different random perturbations. We propose two
consistency terms consisting of both geometric and seman-
tic information for better prediction-invariant constraint un-
der different perturbations. With extensive experiments, we
obtain competitive results compared with recent fully super-
vised methods and demonstrate the effectiveness of our pro-
posed perturbation consistency regularization mechanism in a
semi-supervised setting.

2. METHOD

2.1. SPCR Architecture
The overall architecture of our proposed SPCR is depicted in
Fig. 1. We introduce the implementation of semi-supervised
point cloud instance segmentation by a shared-weight siamese
network which is composed of the state-of-the-art PointGroup
[1]. To be specific, We take a mixture of labeled and unla-
beled point clouds as our input denoted as {PL ∪ PU}, where
PL and PU represent the labeled and unlabeled point cloud
respectively. To extract additional training signal for self-

supervision, we conduct a perturbation Φ on the original
point cloud to obtain transformed point cloud denoted as
{Pt

L ∪ Pt
U}. After that, the original point cloud and trans-

formed point cloud are passed to the siamese network si-
multaneously for instance prediction. The output instance
candidates are represented by {IL, IU} and {ItL, ItU} respec-

tively. {IL, IU} are further transformed to
{
ÎL, ÎU

}
by the

same perturbation conducted on the original point cloud. For
instance candidates ItL, we optimize them with transformed
ground truths Lt

P through supervised loss defined in Point-
Group. For other predictions, we propose a perturbation
consistency regularization to constrain the pair-wise instance
candidates to be consistent both in semantic categories and
geometric properties. Details of the perturbation scheme and
perturbation consistency regularization mechanism will be
described in the next two sub-sections.

2.2. Perturbation Scheme

An important factor for consistency regularization is the per-
turbations applied to the input point cloud. We propose three
types of perturbation consisting of random jitter, flipping and
rotation to prevent the labeled data from overfitting and lever-
age the unlabeled data for self-supervised learning. At first,
we initial the perturbation matrix M of Φ with an identity
matrix of shape 3 × 3. For jitter, the perturbation matrix will
be added with a random matrix of the same shape as M. For
flipping, we update M by multiplying its first element with a
random variable selected from {1,−1}, where -1 means flip-
ping along y-axis and 1 means no flipping. For rotation, we
firstly generate a rotation angel formulated as θ = 2πδ where
δ is a random variable and further define the corresponding
rotation matrix as

R(θ) =

 cos(θ) sin(θ) 0
−sin(θ) cos(θ) 0

0 0 1

 (1)
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Method Metric 10% 20% 30% 40% 50% 70% 100%

PointGroup [1]
mAP 13.4 20.8 25.8 27.6 29.6 31.6 33.7

mAP@50% 27.3 40.3 47.1 48.8 50.3 51.7 54.8
mAP@25% 42.1 55.6 63.5 65.2 67.0 68.8 70.6

Ours
mAP 19.6 27.1 29.3 31.2 31.7 32.8 35.4

mAP@50% 35.6 47.8 50.7 52.9 53.9 54.9 57.5
mAP@25% 51.4 62.3 66.5 68.1 69.1 70.1 71.6

Improvements
mAP 6.2 6.3 3.5 3.6 2.1 1.2 1.7

mAP@50% 8.3 7.5 3.6 4.1 3.6 3.2 2.7
mAP@25% 9.3 6.7 3.0 2.9 2.1 1.3 1.0

Table 1. Comparison of inductive learning with PointGroup on ScanNet v2 val set. Absolute improvements between Ours and
PointGroup are reported in terms of mAP, mAP@50% and mAP@25% respectively.

After that, we will adjust M by multiplying it with rotation
matrix R(θ) and thus get the final perturbation matrix.

With the established perturbation matrix M computed via
the above random perturbation scheme, a training batch with a
mixture of labeled and unlabeled samples will be transformed
by multiplying it with M. In particular, the point-level la-
bels LP of labeled samples PL are also transformed by the
same perturbation before supervised optimization. To ensure
the validity of consistency regularization, the instance predic-
tions {IL, IU} of original inputs {PL ∪ PU} are transformed
as well.

2.3. Consistency Regularization

As stated above, in order to provide additional self-supervision
for network training, we rely on enforcing a consistency reg-
ularization between the predictions under different perturba-
tions. It is obvious that the consistency of predictions means
being consistent both in semantic categories and geometric
properties. To this end, we propose two terms of consis-
tency regularization for semi-supervised point cloud instance
segmentation and define the consistency regularization loss
as

LCR = λ1Lsemantic + λ2Lgeometric (2)

where the semantic term Lsemantic enables consistency reg-
ularization by enforcing the similar predictions of semantic
categories and the geometric term imposes the structural con-
straint on instance candidates for maintaining consistent ge-
ometric properties. λ1 and λ2 are the weights to control the
importance for each term.
1) Semantic Consistency Term. For predictions {ItL, ItU}
and

{
ÎtL, Î

t
U

}
of the original and transformed input point

clouds, let {P t
L, P

t
U} and

{
P̂ t
L, P̂

t
U

}
represent the semantic

probabilities of points on these instance candidates respec-
tively. We define the semantic consistency regularization
term as the KL-divergence:

Lsemantic =

∑
DKL(ptL ‖ p̂tL) +

∑
DKL(ptU ‖ p̂tU )∣∣∣P̂ t

L

∣∣∣+
∣∣∣P̂ t

U

∣∣∣ (3)

2) Geometric Consistency Term. Using the semantic term
alone is to merely constrain the predicted semantic class of
instance candidates, while ignore another import constraint
of geometric information. Similarly, we denote the predic-
tion of per-point offset to its instance center as {Ot

L, O
t
U} and{

Ôt
L, Ô

t
U

}
respectively. The geometric consistency regular-

ization are then formulated as

Lgeometric =

∑
(otL − ôtL) +

∑
(otU − ôtU )∣∣∣Ôt

L

∣∣∣+
∣∣∣Ôt

U

∣∣∣ (4)

3. EXPERIMENTS

3.1. Dataset and Evaluation Criteria

Dataset. We evaluate our semi-supervised point cloud in-
stance segmentation method on ScanNet v2 [19] dataset. The
official dataset separation has 1201 scans for training, 312
scans for validation and 100 scans for testing. Point-level
semantic-instance labels are well annotated for each scene of
the training and validation sets.
Evaluation Criteria. Following the common experimental
protocol for point cloud instance segmentation, we adopt the
same 18 object classes for evaluation as reported in [1]. We
use the mean average precision at overlap 25% (mAP@25%),
overlap 50% (mAP@50%) and overlaps in the range [0.5 :
0.95 : 0.05] (mAP) as our evaluation criteria as defined in the
ScanNet benchmark.

3.2. Implementation Details

Network. We adopt PointGroup [1] as the structure of our
siamese network since it is the state-of-the-art method for
point cloud instance segmentation. The inputs of our network
are batches of point clouds with a mixture of labeled and un-
labeled samples whose batch size is set to the same number of
2. Following the procedure of [1], the maximum point num-
ber of the input point clouds is limited to 250,000 for efficient
network training. For weights of each consistency term, we
set λ1 = 2 and λ2 = 1 empirically.
Training. With the available labeled point cloud, we pre-train
PointGroup for 384 epochs with batch size 8. After that, we
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Method Metric 10% 20% 30% 40% 50% 70%

PointGroup [1]
mAP 16.0 24.6 30.1 31.9 35.5 36.9

mAP@50% 32.9 44.9 52.6 55.2 59.2 61.2
mAP@25% 47.2 61.9 69.4 70.0 73.9 74.6

Ours
mAP 22.3 29.8 32.2 34.3 36.4 37.4

mAP@50% 39.9 52.5 55.1 57.9 60.3 61.8
mAP@25% 53.4 65.8 70.3 71.2 74.5 75.7

Improvements
mAP 6.3 5.2 2.1 2.4 0.9 0.5

mAP@50% 7.0 7.6 2.5 2.7 1.1 0.6
mAP@25% 6.2 3.9 0.9 1.2 0.6 1.1

Table 2. Comparison of transductive learning with Point-
Group on ScanNet v2 val set. Absolute improvements be-
tween Ours and PointGroup are reported in terms of mAP,
mAP@50% and mAP@25% respectively.

Method mAP mAP@50% mAP@25%
Baseline 13.4 27.3 42.1

SCR 15.4 33.2 47.3
GCR 16.3 32.8 48.7

Both SCR & GCR 19.6 35.6 51.4

Table 3. Ablation study of different terms of perturbation
consistency regularization on ScanNet v2 validation set.

initial the siamese network with the pre-trained weights, and
train our SPCR network on both the labeled and unlabeled
data for another 128 epochs. We take Adam as the optimizer
with an initial learning rate of 0.001 for the pre-train stage,
which is decreased by 10 for fine-tuning of our SPCR.
Inference. During inference, we forward the point clouds of
entire scenes as inputs to the siamese network to produce the
instance candidates. we then post-process these predicted in-
stance candidates by a 3D NMS module with an Intersection-
over-Union (IoU) threshold of 0.3. Note that the IoU here is
computed according to instances rather than bounding boxes.

3.3. Comparison with Fully-supervised Methods

To the best of our knowledge, our method is the first semi-
supervised point cloud instance segmentation network. So
we quantitatively compare our SPCR with the state-of-the-art
fully-supervised PointGroup [1] to validate the effectiveness
of our proposed framework. Specifically, we select various
ratios of labeled data from the entire training set of ScanNet
v2 dataset and train PointGroup in a fully-supervised way un-
der these different ratio settings. For our proposed SPCR, we
train it in a semi-supervised way with both the labeled and
unlabeled samples for each label ratio setting.
Inductive Learning. For inductive learning, we conduct the
comparison against PointGroup on the unseen validation set.
As listed in Table 1, it is shown that our SPCR outperforms
PointGroup under all the label ratio settings for three dif-
ferent evaluation metrics. Given 10% labeled data, our net-
work obtains 6.2%, 8.3%, and 9.3% absolute improvements
for mAP, mAP@50% and mAP@25% respectively, which
demonstrates that our SPCR is able to learn from unlabeled
data especially when the labeled data is rather limited.

Additionally, SPCR can achieve comparable performance
when the label ratio is set as 50% compared with the fully-
supervised PointGroup. Moreover, we are also able to fur-
ther improve the performance for fully supervised setting with
100% labeled data. They indicate that our proposed self-
supervised perturbation consistency regularization is indeed
effective.
Transductive Learning. For transductive learning, we com-
pare our network with PointGroup on the given unlabeled data
and the results are reported in Table 2. we can see similar
improvements as demonstrated in inductive learning, which
further validate the superiority of our method.

3.4. Ablation Studies

In this section, we analyze the contribution of each term of
proposed perturbation consistency regularization, including
semantic consistency regularization (SCR) and geometric
consistency regularization (GCR).

We conduct the ablation studies on ScanNet v2 with
10% labeled data and the comparison is reported in Ta-
ble 3. It is obvious that the performance always improves
either by adding semantic consistency regularization or ge-
ometric consistency regularization. Besides, the geometric
consistency term has more contributions than the semantic
consistency term. Finally, the combination of the two con-
sistency terms produces better performance than their terms
solely, which proves that all terms of our proposed perturba-
tions consistency regularization indeed boost the process of
semi-supervised point cloud instance segmentation.

4. CONCLUSION

In this paper, we propose the first semi-supervised point cloud
instance segmentation architecture with self-supervised per-
turbation consistency regularization. We implement our semi-
supervised framework by a shared-weighted siamese network
and propose a perturbation consistency regularization mech-
anism to provide self-supervision for network learning from
unlabeled data. Our SPCR network does not require a large
number of well-annotated training data, but achieving com-
petitive results compared with its fully-supervised counter-
part. Extensive experiments validate the effectiveness and su-
periority of our SPCR and demonstrate that semi-supervised
learning is a promising learning paradigm to solve the data-
hungry problem of point cloud instance segmentation.
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