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Abstract—Memory is a complex process across different brain
regions and a fundamental function for many cognitive be-
haviors. Emerging experimental results suggest that memories
are represented by populations of neurons and organized in
a categorical and hierarchical manner. However, it is still not
clear how the neural mechanisms are emulated in computational
models. In this paper, we present a spatio-temporal memory
(STM) model using spiking neurons to explore the memory
formulation and organization in the brain. Unlike previous
approaches, this model employs temporal population codes as
the neural representation of information and spike-timing-based
learning methods to formulate the memory structure. It explicitly
demonstrates that the complex spatio-temporal patterns are the
internal neural representations of memory items. Two types
of memory processes are analyzed and emulated: associative
memory, i.e., spatio-temporal patterns driven by intra-assembly
connections, and episodic memory, i.e., temporally separated
spatio-temporal patterns linked by inter-assembly connections.
Our model will provide a computational substrate based on
low-level neural circuits for developing neuromorphic cognitive
systems with wide applications.

I. INTRODUCTION

MEMORY is an extremely complex brain-wide process,
which is an indispensable part of species intelligence.

Over the past few decades, researchers have devoted significant
efforts to modeling memory mechanisms, in particular, internal
representation of memory and memory organization in the
brain.

The first question related to memory representation is how
information is encoded in the nervous system. As a traditional
coding scheme, rate coding assumes that the most important
information about a stimulus is described by the firing rates
of sensory neurons. However, rate codes fail to describe
rapidly varying real-world stimuli. Recent experimental studies
show that spike timing makes sense in visual [1], auditory
[2], olfactory [3] pathways and hippocampus [4] in various
neuronal systems [5]. It has been reported that precisely timed
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spikes play a pivotal role in the integration process of cortical
neurons [6]. In addition, studies of population coding suggest
that information can be encoded by clusters of cells rather than
single cells [7]. Population coding has been found to exist
throughout the nervous system. Visual features and natural
sounds are encoded with population codes in the visual cortex
[8] and auditory cortex [9], respectively. In addition, temporal
population coding has been found to be capable of encoding
visual stimuli invariantly and related to memory [10], [11]. We
believe memory coding is achieved by combining temporal
codes and population codes.

With development in large-scale ensemble recording tech-
niques, network-level functional coding units termed neural
assembly (or population) have been identified in the hippocam-
pus [12]. Moreover, a recent study on population response
patterns in monkey inferior temporal cortex suggests that
external stimuli can be represented by responses of neural
populations, and encoded memory patterns are organized in
a hierarchy structure [13], [14].

The organization of memory is closely associated with
the learning process in the nervous system. Spike-timing-
dependent plasticity (STDP) and other spike-timing based
learning schemes are thought to be involved in the formation
of neural assemblies and associative memory [15], [16]. In
addition, different learning algorithms using spiking neuron
have been proposed to study hetero-association [17]–[21].
However, the formulation and organization of auto-associative
and episodic memories (Fig. 1) by virtue of temporal coding
and learning remain underexplored.

In this work, we propose a hierarchically structured spiking
neural network model, called spatio-temporal memory (STM),
which is able to study the formation of neural assemblies and
the organization principle. In this model, sensory information
travels upwards along the hierarchical network during the
bottom-up information processing (Fig. 2). With a spike-
timing based learning algorithm during the storing phase,
the model maps sensory information into neural assembly
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Fig. 1. Retrieval of associative memory and episodic memory. Hetero-
associative memory is a mapping from one pattern to another. Auto-associative
memory associative the input pattern to itself. Episodic memory is a collection
of experiences in time in a serial form.

activities to form memory items. We demonstrate that auto-
associative memory is formulated via fast STDP learning
(in Layer I and II) and episodic memory produced by slow
STDP learning (in Layer II). The main contribution of this
model lies in that memory formulation is implemented by
temporal population coding and temporal learning, which
are missing components in existing memory models [22],
[23]. In [24], a hierarchical model based on spiking neurons
named Cortext was proposed. Although timing of spikes is
employed in Cortext, it mainly targets visual recognition, while
temporal coding and memory organization are not exploited.
The hierarchical temporal memory (HTM) model [25], is
successful in emulating the associative and episodic memory
functions. However, it is not able to simulate the memory
formulation and organization process through complex spatio-
temporal dynamics of spiking neurons.

In summary, the main features of the STM model include:

1) It is the first comprehensive computational model that in-
tegrates spiking neural learning and memory formulation
dynamic process. In contrast to existing memory models
focusing only on memory functions, the STM model
provides a low-level neural circuits based substrate that
is feasible to devise neuromorphic cognitive systems in
hardware, e.g., neuromorphic chips.

2) As a multi-layer hierarchical structure composed of spik-
ing neurons, the STM model is capable of analyzing and
illustrating various important computational primitives
in the complex memory process, from neural assemblies,
intra- and inter-assembly connections, to spatio-temporal
dynamics of neural activities.

3) STM has successfully emulated important memory func-
tions based on spiking neural dynamics, illustrating that
neural assemblies and their spatio-temporal patterns of
activities serve as the internal representation of memory,
temporal learning steers the network to associate neural
activities with input patterns and the learned associations
are distributively stored in the connections within and
between assemblies.

The remaining of this paper is organized as follows: in Sec-
tion II, we introduce the general structure of the STM model,
neural coding and learning algorithms. In Section III, the

performance of the STM model is demonstrated by simulation
results. In Section IV, important issues of the proposed model
and related works are discussed. The conclusion is drawn in
Section V.

II. THE SPATIO-TEMPORAL MEMORY MODEL

This section introduces spiking neuron models, neural oscil-
lations, basic network architecture, neural coding and learning
algorithms in detail.

A. Neuron Model

The spike response model (SRM), which provides a simple
description of the spiking neuron, has been widely used in
various studies [26]. The state of neuron i is described by
its membrane potential vi(t). A spike is generated when the
membrane potential reaches its threshold (Vthr = 1). The spike
response model can be written as

vi(t) = η(t− ti) +
∑
j

wijεij(t− tj) + hext(t) (1)

where ti and tj denote firing times of the presynaptic neuron
j and the post-synaptic neuron i, respectively. wij is the
synaptic efficacy from neuron j to neuron i. η(t − ti) is the
refractory kernel modeling the neural dynamics after firing.
hext(t) is external stimulating input. The kernel εij(t − tj)
models response of neuron i to the presynaptic spike (single
spike is assumed for simplicity) from neuron j as

εij(s) = Vnorm(exp(− s

τ
)− exp(− s

τs
)) (2)

where s = t− ti is the interval after the firing of presynaptic
neuron i, Vnorm is used to normalize the maximal value of
εij(s), τ = 10ms and τs = 2.5ms are time constants.

Pyramidal cells, which are the most numerous excitatory
cell type in mammalian cortical structures, are employed
in our model (Layer I) simulating short-term memory. By
utilizing the slow build-up ramp of after-depolarizing potential
(ADP) of pyramidal cells [27], the status of neurons can be
maintained through repetitive firing. We plug ADP kernel into
kernel η(t− ti) to describe the dynamics of pyramidal cell i
at time t as

η(t− ti) = AADP
t− ti
τADP

exp(1− t− ti
τADP

) (3)

where AADP = 0.88 is the amplitude of ADP, and τADP =
200ms is the time constant affecting the duration of excitatory
ramp.

B. Theta/Gamma Oscillations

Theta and gamma oscillations are two important types of
brain wave for synchronizing the neural activity [28]. They
are critical for temporal coding/decoding of active neuronal
ensembles, learning and memory formation [29], [30]. An
external theta oscillatory source hext(t), which injects current
to neurons in Layer I, is modeled as a cosine wave

hext(t) = vθ(t) = Aθ cos(2πfθ + ϕ0) (4)
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where Aθ is the amplitude of sub-threshold membrane poten-
tial oscillation, fθ = 6 is the frequency of theta oscillation, and
ϕ0 is the initial phase. It has been found that memory capacity
depends on the theta/gamma cycle length ratio, suggesting
that short-term memory is reserved within individual gamma
cycles [31]. In the proposed model, each memory item is
represented by firings in different gamma cycles. Meanwhile,
inhibition from interneurons suppresses other neurons. The
theta oscillation is simulated as an external signal source,
while gamma oscillation virtually exists as spikes volley at
a frequency similar to that of gamma waves.

C. Network Architecture

The basic STM model is composed of three layers: input
layer, Layer I and Layer II as shown in Fig. 2.

Encoded Stimuli

Input Layer

Layer I

Layer II

Interneurons

External 

Theta Oscillation

Slow STDP

Fast STDP

Tempotron Rule

Tempotron Rule

(21)

(11)

(22)

(10)

Excitatory

Inhibitory

......

......

Fig. 2. The architecture of the STM model. Neurons forming neural
assemblies and enhanced lateral connections are illustrated in different colors.
Fast STDP and slow STDP learning algorithms are employed to adapt the
connections within layers (Layer I and Layer II, respectively), while tempotron
learning rule is applied to the connections between layers.

Neurons in the lower layer are fully connected to the
next higher layer, and lateral connections exist in Layer I
and Layer II. Interneurons provide feedback inhibition to
prevent continuous firing and temporally separate firing events
representing different memory items into gamma cycles. In
order to distinguish state variables in different layers (e.g.,
v
(1)
i denotes membrane potential of neuron i in Layer I)

and stimulating inputs (connections) from different layers,
superscripts are used in the following equations (e.g., v

(10)
i

denotes summed input from the input layer received by neuron
i in Layer I. w(21)

ij denotes synaptic weight from neuron j in
Layer I to neuron i in Layer II). The dynamics of pyramid
cells in Layer I is specified by:

v
(1)
i (t) = η(t− ti)+ v

(10)
i (t)+ v

(11)
i (t)+ v

(1)
inh(t)+ vθ(t) (5)

with
v
(10)
i (t) =

∑
j

w
(10)
ij ε

(0)
ij (t− tj) (6)

and

v
(11)
i (t) =

∑
j ̸=i

w
(11)
ij ε

(1)
ij (t− tj) (7)

where v(10)(t) and v(11)(t) are induced by input currents from
neurons in input layer and Layer I, respectively. v(1)inh(t) is the
inhibitory feedback from interneurons.

Similarly, each neuron in Layer II receives inputs from other
neurons in the same layer and all the neurons in Layer I. The
dynamics of neuron i in Layer II is defined by

v
(2)
i (t) = v

(21)
i (t) + v

(22)
i (t) + v

(2)
inh(t) (8)

with

v
(21)
i (t) =

∑
j

w
(21)
ij ε

(1)
ij (t− tj) (9)

and

v
(22)
i (t) =

∑
j ̸=i

w
(22)
ij ε

(2)
ij (t− tj) (10)

Therefore, the network connectivity mainly includes two
types of connections: First, lateral connections between neu-
rons in the same layer. Second, inter-layer connections from
input layer to Layer I and from Layer I to Layer II.

D. Temporal Population Coding

The information about stimulation is encoded by the time
of spikes generated by a specific population of neurons, and
each input pattern is coded by a particular group of neurons.
This work employs the temporal population coding to mimic
sensory encoding process. Here, we take visual signal as an
example to show how real-world stimuli can be encoded into
single-spike spatio-temporal patterns as shown in Fig. 3. A
grayscale image is fed into Garbor filters [32] and the output
are converted into neural firings corresponding to the following
equation.

ti = f(si) = tmax − ln(α · si + 1) (11)

where ti is the firing time of neuron i, tmax is the width
of encoding window, α is a scaling factor, and si is the
intensity of output of Garbor filter. As a result, each spike
codes orientation components of the image and the latency
denotes the weight of the corresponding component.

Garbor Filters

Latency

Coding

Image
Spatio-temporal 

Pattern

Fig. 3. Encoding scheme. A grayscale image is convolved with Garbor filters
to extract orientation related features and then converted into a spike pattern
by latency coding method.
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E. STDP and Tempotron Learning Rule

As precise spike timing and the interval between pre- and
postsynaptic firing were discovered, learning with millisec-
ond precision has intrigued intensive interest. The temporally
asymmetric form of Hebbian learning induced by temporal
correlations between pre- and postsynaptic spikes is called
STDP. Similar to other forms of synaptic plasticity, STDP
is believed to be the underlying mechanism for learning
and information storage in the brain [33]. It assumes that
repeated presynaptic spikes contribute to the closely following
postsynaptic action potential and lead to long-term potentiation
(LTP) of the synapse, whereas an inverse temporal relation
results in long-term depression (LTD) of the same synapse.
Therefore, the change of the synapse is defined as a function
of the relative timing of pre- and postsynaptic spikes, which is
called the STDP function as shown in the following equation:

∆wij =

{
a+ · exp( s

τ+ ) if s < 0
−a− · exp(−s

τ− ) if s > 0
(12)

where wij is the synaptic weight from neuron j to neuron
i, a+ and a− are amplitudes of exponential functions, and
s = tj − ti denotes the time difference between pre- and
postsynaptic spikes. The STDP function (also called learning
window) is illustrated in Fig. 4.

∆w

s

a+

-a-

pre

post

t j

t i

0

Fig. 4. Spike-timing-dependent plasticity (STDP).

In this model, we apply two different types of STDP
processes: fast STDP in Layer I and slow STDP in Layer
II. Neurophysiological experiments have found that synaptic
modifications varies with different decaying time constants
of postsynaptic N-methyl-D-aspartate (NMDA) receptors [34],
[35], the predominant molecular device for controlling neural
plasticity. In the STM model, STDP learning mediated by
fast and slow NMDA receptors (fast: τfast ∼ 25ms, slow:
τslow ∼ 150ms) is referred to as fast and slow STDP,
respectively (Fig. 5). Fast STDP in Layer I regulates neurons
firing with a temporal distance less than gamma cycles,
while slow STDP in Layer II results in synaptic modification
between neurons firing with a greater temporal distance. By

multiplying a simplified activation function of NMDA channel,
the modified STDP can be rewritten as

∆wij =

{
a+ · exp( s

τ+ ) ·G(s) if s < 0
−a− · exp(−s

τ− ) ·G(s) if s > 0
(13)

with
G(s) =

{
1 if |s| ≤ τNMDA

0 if |s| > τNMDA
(14)

where the decaying constant τNMDA = τfast is set for fast
STDP and τNMDA = τslow for slow STDP.

Synaptic Change

s

01
234567

Theta Oscillation

Gamma Oscillation

A

B

6-10 Hz

25-100 Hz

Fast STDP

Slow STDP

Fig. 5. LTP induced by STDP learning. (A) Firings within each gamma
cycle represent memory items 0-7. (B) Synaptic changes depend on the time
between firings. Connections within and between neural assemblies are formed
via fast STDP (1 → 0) and slow STDP (7 → 0), respectively.

Among existing spike-timing based learning approaches, the
tempotron rule is a biologically plausible supervised synaptic
learning scheme compatible with temporal codes [17]. Tem-
potron rule is used to train the network to reproduce spatio-
temporal patterns by adapting connections between layers. It
replaces the post synaptic spike time (tj) in STDP with the
time (tmax) at which the postsynaptic potential reaches its
maximal value. As a supervised learning rule, each neuron
needs to make a decision on whether the presented stim-
ulus contains features that have been learned before. The
connections from neurons that contribute to the integrated
postsynaptic membrane potential will be enhanced according
to the tempotron learning rule as follows

∆wi = λd
∑
si<0

exp(si) (15)

where wi is the synaptic weight from afferent i to the
postsynaptic neuron, λ is the learning rate, d is the desired
output label (either 0 or 1), and si = ti − tmax is the delay
between presynaptic firing (Si) and the time when postsynaptic
membrane potential V (t) reaches its maximal value Vmax. The
tempotron learning rule is illustrated in Fig. 6.

III. SIMULATION RESULTS

In this section, we demonstrate that the proposed STM
model is capable of learning patterns, storing them into indi-
vidual gamma cycles with population firings, and performing
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Fig. 6. Illustration of the tempotron rule. (A) Typical spatio-temporal pattern.
(B) Membrane potential of the postsynaptic neuron. The maximum value of
the membrane potential is reached at tmax. (inset) The synaptic weight wi

changes accordingly to the time difference between s and the desired signal
d. If d = 1, ∆wi ≥ 0 (solid line), or if d = −1, ∆wi < 0 (dashed line).

sequence learning. The results show how neural populations
contribute to the formation of associative memory and episodic
memory and how they are organized in a hierarchical network.
Several experiments are conducted to illustrate and analyze
these processes.

As shown in Fig. 2, the spiking neural network used to
implement the STM model is composed of three layers. The
synaptic weights are initialized according to the population
size of each layer. Each input pattern (e.g., a letter) is rep-
resented by tens of spikes using temporal population codes
as shown in Fig. 3, and they are introduced to the network
during troughs of the theta oscillation. The inter-layer synaptic
weights are updated according to the tempotron learning rule
during the representation of input patterns (gray strips in Fig.
7), while intra-layer synaptic plasticity is modified by STDP
learning.

A. Network Performance

Driven by input synaptic currents, increasing number of
pyramidal cells in Layer I start to fire and form different
neural assemblies iteration by iteration as shown in Fig. 7.
Neural assemblies coding for different input patterns can be
identified in Layer I and II, respectively (Fig. 7B and 7C).
Within each theta cycle, neural assemblies respond selectively
and repetitively to the stimulation in the same order as
input patterns get introduced to the network. As can be seen
from Fig. 7B, individual letters (‘L’, ‘O’, ‘V’, and ‘E’) are

separately encoded by the volley activities of corresponding
neural assembly in Layer I. While neural activities generated
by all four neural assemblies in Layer II are coding for the
word ‘LOVE’. The memory coding principle is explained in
detail in section III A and B, respectively.
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Fig. 7. Neural activity propagates through the system. (A) Each input patterns
consists of firings within an encoding window (gray strips). (B) and (C) are
the raster plots of the neural activities in Layer I and II, respectively. Colored
dots denote spikes generated by neurons coding for different input patterns.

Fig. 8 reveals the mechanism underlying repetitive firing of
pyramidal cells. After generating the first spike by a particular
neuron, its ADP starts to build up. When the slowly ramping
up ADP meets near-peak theta current, the pyramidal cell will
fire again in the following theta cycle. Meanwhile, inhibitory
feedback from interneurons prevents neurons coding for other
patterns from firing right after the volley spikes. As a result,
spike volleys are temporally separated into individual gamma
cycles (Fig. 7A).

In sum, neurons forming the same neural assembly tend to
fire in synchrony, and neural assemblies coding for successive
patterns are temporally compressed. The synchrony is caused
by fast STDP in Layer I, while the compression is resulted
from slow STDP in Layer II. As demonstrated in Fig. 7,
neurons coding for different memories fire in gamma cycles
in Layer I represent the detection of individual patterns, while
neural responses within each theta cycle in Layer II represent
the recognition of a sequence of patterns. As neural assemblies
identified in Layer II can be considered as a whole assembly
coding for a particular sequence of patterns, inter-assembly
episodic memory binds information about temporally sepa-
rated patterns (letters) into a compressed pattern (word).



MANUSCRIPT SUBMITTED TO IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 6

0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5

1

1.5

0 100 200 300 400 500 600 700 800 900 1000
-0.5

0

0.5

1

Time (ms)

M
e

m
b

ra
n

e
 P

o
te

n
ti
a

l

Time (ms)

A
D

P
 &

 I
n

h
ib

it
io

n

A

B

L O V E
Neuron 1

Neuron 4

Neuron 3

Neuron 2

Fig. 8. Typical neural responses of pyramidal cells in Layer I. (A) Membrane
potentials of neurons coding for different patterns. (B) ADP of pyramidal cells
(positive) and inhibition from interneurons (negative).

B. Network Connectivity

Since fast and slow STDP processes take place in Layer
I and II, respectively, the resulted lateral connectivities are
different. Therefore, we examine the synaptic weights, es-
pecially intra-assembly connections in Layer I and inter-
assembly connections in Layer II as presented in Fig. 9 and
Fig. 10.
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Fig. 9. Neural connectivity from input layer to Layer I (A) and within Layer
I (B) before (left) and after learning (right). The activated neurons are picked
out and rearranged for clear illustration in the right column. Intra-assembly
connections are highlighted by colored boxes.

At the beginning, connections among neurons are randomly
initialized (Fig. 9, left column). As learning proceeds, some
relative strong synaptic weights (darker dots) are developed
(Fig. 9, right column). Similar phenomenon can be observed
in Fig. 10. The enhanced connections are caused by the input
patterns and reform the structure of the network.

When exposed to external stimuli, neurons in Layer I start
to fire due to the enhancement of connections from input layer
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Fig. 10. Evolution of the neural connectivity from Layer I to Layer II (A)
and within Layer II (B). Inter-neural assembly connections in Layer II are
highlighted by colored boxes.

to Layer I as shown in Fig. 9. Once neurons in Layer II receive
enough stimulation from Layer I, they begin to generate spikes.
At the same time, activated neurons within the same layer wire
together to form neural assemblies as shown in Fig. 9B (w(11))
and Fig. 10B (w(22)).

To further study the resulted neural assemblies and their
connectivities, we take a closer look at synaptic connections
within Layer I and II. Generally, lateral connections can be
divided into intra-assembly, inter-assembly and weak connec-
tions. The connectivity developed after learning is illustrated in
Fig. 11. As non-activated neurons wire weakly to all the other
neurons, only intra-assembly and inter-assembly connections
are drawn in Fig. 11.

Intra-assembly Connection

Inter-assembly Connection
Parymid Neurons

Fig. 11. Schematic diagram of developed lateral connectivity. Lateral connec-
tions within the same layer are divided into intra-assembly and inter-assembly
connections. Only inter-assembly connections from the first neural assembly
to the rest are drawn for clear illustration.
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Since fast NMDA receptors stay activated for several mil-
liseconds, only firings of neurons forming the same assembly
fall within the time window. Consequently, intra-assembly
connections are enhanced via STDP as shown in Fig. 9B. The
highlighted weights matrices show that each neural assembly
forms a recurrent subnetwork with auto-associative memory
coded in the enhanced lateral connections.

Although lateral connections in Layer II were strengthened
as those in Layer I, the resulting connectivity is different from
that in Layer I. As slow STDP has a wider learning window
spanning over several gamma cycles, spikes in different cycles
would induce enhancement of inter-assembly connections.
Salient weights along the diagonal in Fig. 10B are similar to
those in Layer I, where auto-associative memory is stored.
While elements in the colored boxes denote connections
between neural assemblies, in which episodic memories are
encoded.

C. Auto-Associative Memory

Despite constant changes in real-world environment, our
brain has a remarkable ability to associate. Along sensory
pathways, information about external stimulation is encoded
into reliable neural activities. After training, associative mem-
ories (Fig. 1) are stored in the connections between neurons.
Input patterns are hetero-associated with neural responses in
Layer I via synaptic weights between the input layer and
Layer I. Connections from the input layer to Layer I form
the mapping from an input pattern to the activation of a
particular neural assembly. At the same time, auto-associative
memory is represented by intra-assembly connections. These
lateral connections form a recurrent subnetwork, which can
be activated without enough input stimulation (incomplete
pattern).

As neural activities can be observed as an explicit ex-
pression of stored memory, pattern completion may refer to
the ability that a subset of neurons from a particular neural
assembly is able to arouse the rest of that assembly. The
trained network is expected to be competent for recalling
similar neural activities upon presentation of learned patterns
and retaining invariant responses in the presence of noises
and even corruption of information. Since temporal population
coding scheme is employed, the lost information can be re-
covered with the aid of other contributing neurons. In order to
investigate this capability of reproducing neural activities, time
jitter and missing of spikes are considered in the following
experiments. A correlation-based measure of spike timing [36]
is used to calculate the distance between an output pattern and
its corresponding target pattern.

C =
−→s1 · −→s2
|−→s1 ||−→s2 |

(16)

where C is the correlation denoting the closeness between two
temporal coded patterns (s1 and s2). They are convolved with
a low pass Gaussian filter of a width σ = 2ms.

By shifting input spikes, variability of input patterns is
simulated as shown in Fig. 12A. The shifting intervals are
randomly drawn from a Gaussian distribution with mean 0

and variance [0, 5]ms. The correlation between reproduced
neural responses and the desired patterns is presented in Fig.
12. Each experiment has been repeated for 30 times to generate
the averaged performance. Fig. 12B shows that the network
reproduces reliable neural patterns in the presence of shifted
input spikes up to 3ms. However, the performance dramati-
cally drops to around 0.3 as the shifting interval increases to
5ms. Neural response in Layer I is slightly more robust than
that in Layer II due to error accumulation during the upwards
information propagation.
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Fig. 12. (A) Illustration of shifted spatio-temporal patterns. Firing times of
original input spikes (black bars) are shifted with random jitters (gray bars).
(B) Reliability of retrieved neural responses under different noise levels.

Another experiment is conducted to investigate the link be-
tween intra-assembly connections and auto-associative mem-
ory. All settings are the same as in previous experiments,
whereas one out of ten spikes is removed from each input
pattern. The experiment has been run for 20 trials and the
mean value of the correlation between the actual output and
the desired pattern is calculated for each trial.
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Fig. 13. (A) Illustration of neural assemblies in Layer I coding for different
input patterns (letters) after learning. (B) Test results of the associative
memory based on the correlation between retrieved and corresponding desired
patterns in response to corrupted input patterns.

As illustrated in Fig. 13A, intra-assembly connections are
enhanced during learning, while non-selective neurons are
weakly connected to all the other neurons. To verify that
connections within neural assemblies are responsible for the
completion of patterns in Layer I, lateral connections are
removed. As shown in Fig. 13B, the experimental results are
consistent with our analysis.

Knowledge stored in the synaptic weights from the input
layer to Layer I provides the capability of hetero-association
(Fig. 9A) by recognizing specific features contained by input
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patterns. Since corrupted patterns provide insufficient stim-
ulation to neurons in the next layer, some of the trained
neurons that should have been activated may not be triggered.
Fortunately, lateral inputs from excited neurons can provide
supplementary information to recall desired neural responses.
Therefore, the ability to retrieve invariant responses with
partial information (i.e., associative memory) relies on the
distributed knowledge stored in synaptic connections between
layers and within layers as well.

D. Episodic Memory

Since slow NMDA receptors dominate the STDP process
in Layer II, it leads to different postsynaptic neural responses
and different connectivity. The slow decaying time constant
of slow NMDA receptors leads to the accumulation of ex-
citatory postsynaptic potentials (EPSPs) from different neural
assemblies. Meanwhile, slow NMDA receptor channel sustains
its activation state over several gamma cycles, which enables
STDP learning to link sequence of memory items by building
up inter-assembly connections. When lateral connections are
sufficiently developed, the accumulated EPSPs of occurred
memory items would be able to trigger subsequent items with-
out the presentation of expected upcoming input stimulation
during memory recall.
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Fig. 14. (A) Illustration of generated connectivity in Layer II. (B) Raster plot
of neural activities in Layer I during recall. Neurons coding for letters ‘L’,
‘O’, and ‘V’ detect the presentation of them and trigger firings in Layer II.
(C) Episodic memory stored in Layer II helps to recall the missing item (‘E’).

As demonstrated in Fig. 14, stimulation caused by neural
assemblies coding for the first three memory items in the se-
quence is strong enough to trigger the neural assembly coding
for the missing item. The inter-assembly connections may lead
to the result that consecutive memory items are temporally
compressed as a group of neuron coding for the combination of
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Fig. 15. Recall of neural activities induced by accumulated EPSPs. (A)
Response of neural assemblies in Layer I. (B) Membrane potential of an
activated neuron coding for the missing pattern (‘E’) in Layer II. (C) Raster
plot of neural activities in Layer II and their corresponding binary codes.

several patterns in the sequence. This characteristic is crucial
for a spike-timing based hierarchical model, which contributes
to pattern/information binding process.

Fig. 15 shows how EPSPs of consecutive memories lead to
the activation of neural assemblies coding for the next upcom-
ing pattern. As shown in Fig. 15, neural assemblies coding for
them fired in Layer I and Layer II, respectively, while neural
assembly coding for the fourth pattern remains silent. Due to
the slow STDP and enhanced inter-assembly connections in
Layer II, neural assemblies coding for the “missing” pattern
were triggered by the accumulation of EPSPs induced by the
neural assemblies coding for preceding patterns (Fig. 15B).
Neural activities can be converted to binary codes according
to their states within a certain coding time window (gray strips
in Fig. 15C). Neurons are divided into groups with a constant
size and checking the firing state of them. The neural state of
a group is “0” if there is no spike generated and vice versa.
Therefore, each input pattern (letter) can be coded by such
a binary code. By reading out these binary codes, we can
identify the presence of individual features/patterns in Layer
I and combination of features/patterns (sequence) in Layer II.

IV. DISCUSSION

A. Emergence of Neural Assemblies

Basically, the information flow in the model is unidirectional
from bottom to top. Information between layer travels upwards
along the network with a filtering process, while recurrent
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subnetworks (neural assemblies) exist in Layer I and Layer II.
Input stimulation triggers repetitive neural activities in Layer
I, these activities further drive neural responses in Layer II.

During learning, neurons compete with each other to re-
spond selectively to specific stimulus. Synaptic weights be-
tween layers stop changing when the population sizes of
evoked neurons reach the predefined configuration. Although
bounded synapses have limited memory storage capacity [37],
they are used in our model to ensure a certain number of presy-
naptic neurons contributing to the generation of postsynaptic
spikes. In addition, recent work on neural self-organization
can be considered for the generation of neural assemblies to
improve the STM model [38], [39].

B. Storage, Recall, and Organization of Memory

Storage and recall of memory are two important issues for
a memory model. In the learning phase, hetero-association
is achieved by enhanced synaptic weights between layers.
Once pyramidal cells are triggered to fire, cooperation of ADP
and theta oscillation results in the repetitive firing of neurons
coding for memory items as short-term memory. Meanwhile,
fast STDP and slow STDP contribute to the enhancement of
intra- and inter-assembly connections, respectively.

Theta oscillation has been recorded in hippocampus in-
volved in memory function. The model proposed in [40]
suggests that memories might be encoded and recalled during
different portions of the theta cycle. Similar scheme is em-
ployed in our model, hetero-associative memory storage occurs
in troughs of theta oscillation, while stored memories are
retrieved in portions near the maximums of theta oscillation.
Since the activation of neural activities at troughs requires
strong excitation, the resulted synaptic efficacies are stronger
than required at the maximums. Redundant excitation and
distributed information over neurons improve the robustness of
recalling hetero-associative memories. Environmental noises
and even information loss will not lead to a severe retrieval
failure as demonstrated by the simulation results. Moreover,
multiple patterns are encoded and stored into associative
and episodic memories following a hierarchical organiza-
tion principle. Hereto-associative memory is encoded by the
connectivity between layers. Along with the development
of neural assemblies, lateral connections are enhanced by
STDP. Intra-assembly connections represent auto-associative
memory, while episodic memory about the sequence of input
patterns is encoded in the form of inter-assembly connections.

C. Temporal Compression and Information Binding

The discovery of place cells suggests that spatial informa-
tion can be encoded by the cellular activities of hippocampus.
Moreover, dual oscillations have been observed to be involved
in memory function. In the STM model, memory items are
coded by neuron assemblies firing within different gamma
cycles, while past and present events are chunked by the theta
oscillation. When presented patterns that have been learned
before, neural assemblies coding for each of them will be
activated correspondingly. The temporal compression of neural

firing volleys contributes to the generation of inter-assembly
connections and ability to predict upcoming patterns.

Since neural responses in Layer II are linked with inter-
assembly connections, information about different stimuli is
binded as shown in Fig. 7C. Temporally compressed neural
patterns can be treated as a new spatio-temporal pattern.
By duplicating this basic network into a larger network,
more powerful ability to organize neural activities representing
features with different specificity along the hierarchy can be
achieved. Each basic network binds several patterns (features)
into a combined pattern (feature) and transmits it to a higher
level network as its input stimulus. As a result, neural activ-
ities represent more specific and complex patterns along the
hierarchical network.

D. Related Work

The STM model shares some similar ideas with several ex-
isting studies in the field of neuroscience. The proposed model
simulates neural assembly activities reported in [14], and is
in agreement with the separation of encoding and retrieval
theory suggested by [40], [41]. The mechanism sustaining
short-term memory was used in Jensen et al.’s model, while
tempotron learning and STDP learning have been employed
in contributing long-term memory formation in other models.

Recurrent networks have been an important paradigm to
implement auto-associative memory [22]. It has been demon-
strated that simultaneous firings of a group of neurons can be
stored in a fixed recurrent network modeling hippocampual
CA3 area [42]. The idea that dual oscillation interacts with
pyramidal cells has been implemented in the model. Although
firing times of spikes are considered in the model, the external
inputs exciting a specific pyramidal cell are presumed fire
in synchrony, which ignores sensory encoding as well as the
hetero-association process. In addition, recurrent subnetworks
are predefined in the model and input patterns are presented
to specific recurrent networks. These assumptions restrict the
generalization and adaptability of the STM model.

A sequence learning model based on short-term memory
mechanism was proposed in [43], which possesses similar
features of recurrent network and hierarchical structure as our
model. However, our model implements spiking neurons based
computing to achieve a more biologically plausible memory
model. Another sequences learning model in a hierarchical
structure proposed by [44] employs prediction mechanism
and minicolumn structure to realize episodic memory. The
prediction mechanism might be considered to improve our
model in the future.

The hierarchical temporal memory (HTM) [25] aims to
develop a machine learning technology by mimicking the
structural and algorithmic properties of the neocortex, featured
by a sophisticated columns-based structure. In contrast to fixed
structures, our STM model can generate neural assemblies
during the learning process. The plasticity of network structure
not only provides generalization and scale-up capability, but
fully exploits available coding units of the network. Moreover,
the HTM assumes that neural information is represented by
rate codes and leaves out complexity and processing power
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of biological neurons. By using spiking neurons and incorpo-
rating biologically plausible mechanisms, our model is able
to simulate the complex spiking neural dynamics for memory
formulation and organization, which is a distinct feature com-
pared to other cognitive learning and memory architectures
aiming for developing machine learning alternatives (e.g., the
hypernetwork model [45]).

Therefore, the STM model provides a comprehensive ap-
proach to build up low-level neural circuits for neuromorphic
computing such as neuromorphic chips [46]. As brain-inspired
approaches have been applied to solve various real-world
problems [47], [48], efficiently implementing the STM model
on platforms such as VLSI can utilize the inherent advantage
of parallelism of neuromorphic computing.

V. CONCLUSION

In this paper, the spatio-temporal memory (STM) model was
introduced. The proposed model is able to store and recall
both associative and episodic memories with a hierarchical
structure. Throughout the STM model, temporal codes and
temporal learning were integrated to process external stimuli
and formulate memory. The results showed that neural assem-
blies can serve as the internal representation of memory. They
also demonstrated that memories can be stored in the intra-
and inter-assembly connections and organized in a hierarchical
manner in consistent with neural mechanisms in the brain.
Our model provides a comprehensive substrate to elucidate
the complex process of memory formulation and organization
in virtue of complex spiking neural dynamics. Real-world
stimuli such as visual and auditory signals can be employed
as the sensory information to investigate potential applications
of STM model. Being able to more faithfully implement
the dynamic details of memory formulation, our model will
provide more insights to the design of neuromorphic cognitive
systems.
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