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Abstract: Spike protein of SARS-CoV-2 contains a single-span transmembrane (TM) domain and 13 
plays roles in receptor binding, viral attachment and viral entry to the host cells.  The TM domain 14 
of spike protein is critical for viral infectivity. Herein, the TM domain of spike protein of SARS-CoV- 15 
2 was reconstituted in detergent micelles and subjected to structural analysis using solution NMR 16 
spectroscopy. The results demonstrate that the TM domain of the protein forms a helical structure 17 
in detergent micelles. An unstructured linker is identified between the TM helix and heptapeptide 18 
repeat 2 in the cytoplasmic region. The linker is due to the proline residue at position 1213. Side 19 
chains of the three tryptophan residues preceding to and within the TM helix important for the 20 
function of S-protein might adopt multiple conformations which may be important for their func- 21 
tion. The side chain of W1212 was shown to be exposed to solvent and the side chains of residues 22 
W 1214 and W1217 are buried in micelles. Relaxation study shows that the TM helix is rigid in 23 
solution while several residues have exchanges. The secondary structure and dynamics of TM do- 24 
main in this study provide insights into the function of the TM domain of spike protein. 25 

Keywords:  COVID-19; SARS-CoV-2; S-protein; transmembrane domain; NMR; detergent mi- 26 
celles.   27 
 28 

1. Introduction 29 
The epidemic of novel coronavirus disease (COVID-19) started in late 2019. COVID- 30 

19 was declared as a pandemic in March 2020 by the World Health Organization (WHO)  31 
[1-3]. The lifestyles of people from many countries were affected as this disease can be 32 
spread through close contact. This disease is caused by a novel coronavirus which is 33 
named as severe acute respiratory syndrome coronavirus 2 (SAR-CoV-2). SARS-CoV-2 34 
belongs to beta-coronavirus which also contains other important human pathogens such 35 
as SARS-CoV which caused viral outbreak in 2003 [4] and Middle East respiratory syn- 36 
drome(MERS) coronavirus which is the cause of MERS in 2012 [5]. Efforts have been spent 37 
to develop vaccines and antivirals, which will play important roles to prevent viral 38 
spread. The genome of SARS-CoV-2 is very similar to that of SARS-CoV [6] and is a single- 39 
strand and positive-sense RNA. The genome of the virus encodes 16 non-structural pro- 40 
teins (nsp1-16), 4 structural and 9 accessory proteins that are indispensable for viral rep- 41 
lication, invasion and particle formation [6].  42 

The viral lipid envelop contains three transmembrane proteins including spike (S), 43 
membrane (M) and envelope (E) proteins. S protein is a type-I transmembrane (TM) gly- 44 
coprotein and functions as homotrimers on the viral surface [7]. S protein is highly 45 

Citation: Li, Q.; Huang, Q.; Kang, C. 

Secondary structures of the trans-

membrane domain of SARS-CoV-2 

spike protein in detergent micelles. 

Int. J. Mol. Sci. 2022, 23, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor(s):  

Received: date 

Accepted: date 

Published: date 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. 

Submitted for possible open access 

publication under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). 



Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 2 of 11 
 

 

conserved among human coronaviruses and the molecular weight of the protein is at the 46 
range of 180-200 kDa [8]. S protein is an important target for antiviral development as it 47 
plays important roles in binding to angiotensin-converting enzyme 2 (ACE2) receptor, 48 
viral attachment to and entry into host cells  [7, 9, 10]. S protein of SARS-CoV-2 is com- 49 
posed of 1273 amino acids and contains a long N-cytoplasmic region, a TM domain and a 50 
short C-terminus [11]. S protein consists of several domains including an N-terminal sig- 51 
nal peptide, an N-terminal domain, a receptor binding domain, a fusion peptide, hep- 52 
tapeptide repeats 1 and 2, a TM domain and the cytoplasm domain [8]. The structures of 53 
the domains and the entire S protein have been studied using X-ray crystallography and 54 
Cryo-EM. These high-resolution structures provide clear information to understand its 55 
interaction with ACE2 and its conformational changes under different conditions [7, 8, 56 
12]. The structural studies of S protein are critical for antiviral development and under- 57 
standing its function. Strategies affecting S protein interactions with ACE2 such as devel- 58 
oping antibodies have been explored in antiviral development [13, 14].  59 

The TM domain is close to heptad repeat 2 (HR2) and consists of a hydrophobic core 60 
region with a tryptophan -rich region and a cysteine-rich region at its N- and C-termini, 61 
respectively. The TM domain of S-protein is critical for viral infectivity and mutation of 62 
the tryptophan residues in the TM domain was found to decrease viral infectivity signifi- 63 
cantly [15]. A study shows that the TM domain of S protein is critical for the infectivity 64 
and membrane fusion activity of coronavirus [16]. Despite the progress made in structural 65 
studies of the N-terminal cytoplasmic region of S-protein, only one structural study on 66 
the TM domain in bicelles was reported recently [17]. Here, we use solution nuclear mag- 67 
netic resonance spectroscopy (NMR) to investigate the structure and dynamics of TM do- 68 
main of S protein in detergent micelles. The current study uses a longer construct recon- 69 
stituted in a different membrane system. The NMR studies will be helpful for choosing 70 
suitable membrane systems in structural studies. Although detergent micelles may not be 71 
an ideal system for structural and functional studies of membrane proteins, they still serve 72 
as a useful membrane system to understand secondary structure of a membrane protein.  73 

The TM domain of the S protein of SARS-CoV-2 was expressed and purified from E. 74 
coli. The purified protein was reconstituted into detergent micelles. Structural analysis us- 75 
ing solution NMR spectroscopy shows that the TM contains an α-helix and an unstruc- 76 
tured region is present between the helix from heptapeptide repeat 2 and the TM domain. 77 
The indole amide proton of W1212 exhibited close contact with water, suggesting that it 78 
is exposed to the solvent. Dynamics study shows that the TM helix is rigid in solution 79 
while Y1220 and L1224 might undergo exchanges. Our current study provides useful in- 80 
formation to understand the function of the TM domain of S protein.  81 

2. Results 82 
2.1. Solution NMR spectrum of S-TM in micelles 83 

To understand the structure of the TM domain in solution, a construct containing 84 
residues 1201-1239 of SARS-CoV-2 S protein (S-TM) was obtained and expressed in E. coli 85 
(Figure S1). The recombinant protein contains an N-terminal fusion tag for aiding in af- 86 
finity purification, a short stretch from HR2 (amino acids 1201-1213), the tryptophan -rich 87 
region, the hydrophobic region of the TM domain and several residues from the cysteine 88 
rich region (Fig. 1). To prevent sample aggregation due to formation of disulphide bonds, 89 
the cysteine residues in the construct were mutated into serine residues (Fig. 2A). The 90 
recombined protein was able to be purified from E. coli for structural studies. The S-TM 91 
reconstituted into dodecylphosphocholine (DPC) micelles was obtained and subjected to 92 
structural analysis using solution NMR spectroscopy. DPC is a widely used detergent in 93 
membrane protein structural studies and DPC micelles have been successful for structural 94 
studies of quite a few membrane proteins [18-22]. Dispersed cross-peaks were observed 95 
in the 1H-15N HSQC spectrum collected at 40 °C (Figure S2). Similar to other membrane 96 
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proteins, S-TM exhibited narrow dispersion of the cross-peaks at the range of 6.8-9.2 ppm 97 
suggesting the presence of helical structures in this construct (Fig. 2B). 98 

 99 
Figure 1. Sequence of S-TM used in this study. The domains of S protein of SARS-CoV-2. The model 100 
of T-TM in a membrane is shown. Two cysteine residues that are mutated into serine are highlighted 101 
in red. 102 

2.2. Secondary structures of S-TM 103 
Backbone resonance assignment was obtained using conventional triple-resonance 104 

NMR experiments. Nearly complete assignments for the backbone atoms were obtained 105 
and the assignment has been deposited into BMRB under access number 51193. The sec- 106 
ondary structures of residues from S-TM were then predicted based on the obtained chem- 107 
ical shifts of backbone resonances. Both chemical shift index analysis of Cα chemical shifts 108 
and TALOSN+ analysis show that S-TM contains two helical segments (Fig. 2C). Residues 109 
1201-1209 from HR2 form a helix in solution. Residues from the hydrophobic core region 110 
of TM form a helix which contains residues 1215-1236. The three amino acids at the C- 111 
terminus of S-TM are not structured. Residues 1210-1215 between HR2 and the TM are 112 
unstructured serving as a linker region between HR2 and TM domain, which may be due 113 
to the presence of a proline amino acid at position 1213 (Fig. 2A). The linker might provide 114 
freedom to the N-terminal cytoplasmic region to alter its orientation under different con- 115 
ditions without affecting the structure of the TM domain significantly.  116 

 117 
Figure 2. Secondary structure of S-TM in DPC micelles. A. The sequence of S-TM used in this study.  118 
B. Assignment of the 1H-15N-HSQC spectrum of S-TM in DPC micelles. The cross-peaks in the 119 
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spectrum are labelled with single letter and sequence number. C. Secondary structure of S-TM in 120 
DPC micelles. The prediction of the secondary structures was obtained by analyzing Cα chemical 121 
shifts and chemical shifts using TALOSN+. Residues in transmembrane domain are underlined. 122 
Cross peaks corresponding to residues from the fusion tag and side chains of Q residues are labeled 123 
with “*”.  124 

2.3. Structural model of S-TM 125 
A 1H-15N HSQC spectrum of S-TM in D2O was collected to understand secondary 126 

structure and dynamics of S-TM in DPC micelles. Three residues from the HR helix in- 127 
cluding Y1216, Y1209 and I1210 exhibited cross peaks in the spectrum. These residues 128 
should be involved in hydrogen bond formation confirming their helical structure in so- 129 
lution. Residues W1217 to S1235 from the TM helix exhibited cross peaks in the spectrum 130 
(Figure S3). These residues with cross peaks in the HSQC spectrum suggest their partici- 131 
pation in hydrogen bond formation or they are buried in micelles. The structure of TM 132 
domain of S protein in bicelles was determined recently (Fig. 3A). Our study shows that 133 
residues 1214 to 1216 form helical structure in solution. A structural model was built based 134 
on the secondary structure analysis and the hydrogen-deuterium exchange experiment 135 
(Fig. 3B). The chemical shift analysis (Fig. 1C), H/D exchange experiment, lacking long- 136 
range distance restraints strongly suggest that P1213 is a helix breaker in S-TM. 137 

 138 
Figure 3. Structure of S-TM in DPC micelles. A. Trimer structure of the TM domain of S protein in 139 
bicelles. The structure of TM in bicelles (PDB ID 7LC8) is shown [17]. W1217 is shown as sticks. B.  140 
A structural model of S-TM in DPC micelles. The model was generated based on the backbone res- 141 
onance assignment and H-D exchange experiment. The orientations of the helices are not defined 142 
as no restraints are applied. Residues with cross peaks in the HSQC spectrum of S-TM in D2O are 143 
shown as spheres. C. Sequence alignment of current construct (QHD43416.1) with the available 144 
NMR structure, SARS-CoV (AAS75868.1), and MERS (QDI73610.1). D. Analysis of the side chains 145 
of Trp residues in S-TM. Left panel, the 1H-15N-HSQC spectra of S-TM collected at different 146 
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temperatures. Right panel, strip-plots of a 15N-edited NOESY spectrum for the side chains of Trp 147 
residues are shown. NOE between water molecules and indole amide proton of W1212 was identi- 148 
fied, suggesting that it is exposed to the solvent. 149 

2.4. Conformational analysis of residues in S-TM 150 
There are three tryptophan residues in S-TM and these residues are conserved in 151 

SARS-CoV and MERS S proteins (Fig.3C). We explored the conformational status of these 152 
residues by overserving the signals from the indole ring as the signals of the side chains 153 
of tryptophan residues appear in a distinct region of the 1H-15N-HSQC spectrum (Fig. 3C). 154 
Three peaks corresponding to the side chains of tryptophan residues were observed at 25 155 
°C while more peaks were observed at 40 °C for W1212.  The appearance of multiple 156 
peaks of W1212 in the spectrum suggests that its side chains might adopt multiple confor- 157 
mations in DPC micelles or are located at different environments [23]. It is obvious that 158 
side chain of W1212 is exposed to the solvent as it exhibited close contact with water mol- 159 
ecule, evidenced by NOE with water molecules identified in the NOESY spectrum (Fig. 160 
3D). The side chains of W1214 and W1217 are buried in micelles as no NOEs were identi- 161 
fied in the spectrum (Fig. 3D). Interestingly, the cross peak of amide and amide proton 162 
for W1214 in the HSQC spectrum is broadened compared with that of W1217 (Fig. 2B). 163 
Such a difference suggests that there might be exchanges for residue W1214. Taking to- 164 
gether, W1212 localizes in the linker between these two helices, giving rise to multiple 165 
conformations. W1214 localizes at the interface of cell membrane with its side chain buried 166 
in the membrane and conformational exchanges may exist to result in line broadening in 167 
the spectrum (Fig. 3D). W1217 is buried in the membrane and may play important roles 168 
in stabilizing the structure of the transmembrane region. Further mutation studies on 169 
these residues will be helpful for understanding their roles.  170 

2.5. Dynamics of S-TM 171 
The dynamics of S-TM in DPC micelles were investigated by measuring 15N-T1 (Spin– 172 

lattice relaxation), T2 (Spin–spin relaxation) and steady state 1H-15N NOE values (Fig. 4). 173 
The data offer additional information to understand the structure of S-TM in DPC mi- 174 
celles. The two helices are rigid while the linker between these two helices is flexible. Such 175 
flexibility might be important for function of S-protein. The T1 values of residues from the 176 
helix in HR2 are lower than those of residues in the TM region, which is not surprising as 177 
residues in the TM region are buried in DPC micelles. A correlation time of approximately 178 
13 ns was estimated based on the average T1/T2 value for residues in the TM region [20], 179 
which suggests that S-TM under current conditions is monomeric. Further dynamics 180 
study of S-TM in different membrane systems and data acquisition under different mag- 181 
netic fields will be helpful for understanding its dynamics. In addition, analyzing the sim- 182 
ulated relaxation rates based on the structures will be very helpful for determining the 183 
oligomeric states of the sample and identify changes in different time scales [24].  184 

 185 
To detect whether S-TM in DPC can form oligomers we performed a cross-linking 186 

study using glutaraldedyde [25]. In the absence of the cross linker, S-TM exhibited a band 187 
at the molecular weight of 10 kDa which is above its molecular weight (~7 kDa). Such 188 
difference may be due to the presence of DPC micelles in the sample. A band correspond- 189 
ing to higher molecular weight (~14 kDa) was observed in SDS-PAGE (Figure S4), demon- 190 
strating that the construct in DPC micelles can form dimers under such conditions. Fur- 191 
ther optimization of the experimental conditions is needed to obtain trimeric S-TM. The 192 
T1/T2 values of residues in the HR helix are lowers than those of residues in the TM do- 193 
main, suggesting that HR2 helix does not have interactions with DPC micelles. This is 194 
consistent with the fact that folding of HR2 does not require the presence of membrane 195 
systems. Residues including Y1220 and L1224 exhibited lowers T1/T2 values than those in 196 
the transmembrane helix. These residues may undergo exchanges under current condi- 197 
tions.  198 
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 199 

 200 
Figure 4. 15N-T1, T2 and hetNOE analysis of S-TM in DPC micelles. The data were collected on a 201 
Bruker Avance 600 MHz spectrometer equipped with a cryo-probe. 15N-T1, T2 and hetNOE values 202 
of S-TM are plotted against sequence number. 203 

 204 

3. Discussion 205 
SARS-CoV-2 spike protein is an important target for antiviral development [26]. The 206 

structures of spike protein have been investigated by different methods, which provides 207 
critical information for developing antivirals while only one study was carried out the 208 
explore the structure of the TM domain of spike protein in bicelles using NMR spectros- 209 
copy to provide the structural basis for trimer formation [17]. In current study, we ob- 210 
tained S-TM in detergent micelles. The secondary structure of S-TM in micelles was ob- 211 
tained based on the chemical shifts and H-D exchange experiment (Fig. 2, Fig. 3). The TM 212 
domain exists as a helical structure in detergent micelles, which is same as in bicelles. The 213 
TM forms a rigid structure in both bicelles and DPC micelles while exchanges were ob- 214 
served for some residues in micelles. This may be due to the monomeric structure in cur- 215 
rent study. In addition, we have identified a linker region formed by residues 1211 to 1213 216 
between TM and HR2. Proline 1213 be critical for descripting the HR2 and TM helices 217 
(Fig. 3). The presence of the linker might be critical for the function of S protein under 218 
different conditions.  219 

The tryptophan residues are critical for the function of spike protein and mutations 220 
of the residues in the TM domain were found to have impact on viral infectivity [15]. We 221 
demonstrate that the side chain of W1212 is exposed to the solvent and exhibits confor- 222 
mational changes under different conditions. W1212 localizes at the linker between HR2 223 
and TM domain. W1214 is close to the water and membrane interface and W1217 is within 224 
the transmembrane region. No NOEs with water molecules were observed suggesting 225 
that the side chains of W1214 and W1217 are buried in micelles. Relaxation analysis also 226 
support the conclusion (Fig. 4). W1212 exhibited similar dynamics parameters to those in 227 
HR2 helix while W1214 and W1217 behave similarly to those residues in the transmem- 228 
brane helix (Fig. 4). It has been noted that the side chain of a tryptophan is critical for the 229 
stability and orientation of a transmembrane protein [27]. Our study provides insights 230 
into the location of these residues, which will be useful for interpreting their functional 231 
roles in viral infectivity. Further mutations can be made to elucidate the effect of these 232 
residues on protein structure and dynamics.  233 

The S-TM in current study exists as monomers in DPC micelles as evidenced by the 234 
relaxation analysis (Fig. 4) and the cross-linking experiment shows it can form dimers in 235 
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the presence of the cross linker (Figure S4). The TM domain of S protein is functional as 236 
trimers [28] and a recent study by Chou’s team showed that TM domain of S protein exists 237 
as a strong trimer in bicelles [17]. The current S-TM construct in DPC micelles did not 238 
form functional trimers may be due to the following aspects. First, the fusion tag was not 239 
cleaved after protein purification. The presence of fusion tag may affect the formation of 240 
oligomers. Second, DPC micelles were used in the current study. It is known that deter- 241 
gent micelles might not be the ideal system for exploring the structures of membrane pro- 242 
teins [29-31] while quite few structures of membrane proteins have been determined in 243 
DPC micelles [18, 32, 33]. Optimization of the experimental conditions such as the ratio of 244 
DPC to S-TM needs will be helpful to obtain functional trimers in solution. Lastly, the 245 
M1229 in the current construct might affect trimer formation. The previous study showed 246 
that L1229Y mutation disrupted trimer formation as it is part of the hydrophobic core [17]. 247 
Further optimization of the conditions will be helpful for obtaining S-TM trimers. Alt- 248 
hough detergent micelles might not be an ideal system for structural study of a membrane 249 
protein, this study provides secondary structural information to understand the roles of 250 
this domain. 251 

4. Materials and Methods 252 
4.1. Protein expression and purification  253 

The cDNA encoding residues 1201-1239 of SARS-CoV-2 S protein (S-TM) was syn- 254 
thesized and cloned into pET15b. The resulting plasmid encodes a recombinant protein 255 
containing a fusion tag and thrombin cleavage site to remove the fusion tag containing 256 
the following amino acids MGSSHHHHHHSSGLVPRGS. The plasmid was transformed 257 
into Escherichia coli (E. coli) BL21 (DE3) competent cells and were grown in M9 medium 258 
supplied with 100 µg/ml ampicillin. When OD600 reaches 0.6-0.8, protein induction was 259 
initiated by adding β-D-1-thiogalactopyranoside (IPTG) to 1 mM and the cells were fur- 260 
ther cultured at 37 °C and 200 rpm overnight. The recombinant protein was purified into 261 
detergent micelles as described previously [20, 34]. 262 

The E. coli cells with recombinant S-TM were harvested by centrifugation at 9, 000 ×g 263 
for 10 min. The cell pellet was suspended into a lysis buffer (20 mM Tris-HCl, 300 mM 264 
NaCl, pH 7.8, and 2 mM β-mercaptoethanol) and cells were lysed by sonication. Inclusion 265 
bodies were obtained by centrifugation at 18,000 × g for 20 min. The inclusion bodies were 266 
washed with the lysis buffer and suspended in a urea buffer (8 M urea, 300 mM NaCl, 10 267 
mM SDS, 20 mM Tris-HCl, pH7.8). The solution was cleared by centrifugation at 48,000 × 268 
g for 20 min. The supernatant was mixed with nitrilotriacetic acid saturated with nickel 269 
(Ni2+-NTA) resin which was loaded in a gravity column. The resin was washed with a 270 
washing buffer (8 M urea, 300 mM NaCl, 10 mM SDS, 20 mM Tris-HCl, pH7.8 and 20 mM 271 
imidazole). Resin was then washed with washing buffer 2 (20 mM Tris-HCl, pH 7.8, 300 272 
mM NaCl and 10 mM SDS) to remove urea. To reconstitute the protein in DPC micelles, 273 
resin was washed with washing buffer 3 (20 mM Tris-HCl, pH 7.8, 300 mM NaCl and 15 274 
mM DPC). Recombinant protein was eluted using an elution buffer (300 mM imidazole, 275 
pH6.5 and 15 mM DPC).  Purified protein was then further purified through gel filtration 276 
using a gel filtration buffer (20 mM sodium phosphate, pH6.5 and 15 mM DPC) on a su- 277 
perdexTM 200 10/300 GL column. The sample was then combined and concentrated to 1 278 
mM and the concentration of DPC was estimated to 150 mM.    279 

4.2. Resonance assignment   280 
All the NMR spectra were collected at 40 °C to gain signals in the spectra for reso- 281 

nance assignment. The experiments were carried out on a Bruker Avance spectrometer 282 
with a proton frequency of 600 MHz and equipped with a cryogenic triple-resonance 283 
probe. Data were acquired using Topspin 2.1 and  were processed with NMRPipe [35] 284 
and analyzed using NMRView [36].  Sequence-specific assignments of backbone reso- 285 
nances were obtained based on triple-resonance experiments using a 15N/13C-labeled S- 286 
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TM in DPC micelles. These experiments include HNCACB, HN(CA)CO, HNCA, 287 
HN(CO)CACB, HN(CO)CA, and HNCO. The chemical shifts of Hα and Hβ were assigned 288 
using a HBHACONH experiment. Secondary structure of S-TM in DPC micelles was iden- 289 
tified by analysis of 13Cα  chemical shifts [37] and TALOS+[38].  A 3D 15N-edited NOESY 290 
(mixing time=100 ms) was collected and some peaks were manually assigned and the peak 291 
intensities were converted into distance restraints using CYANA [39]. The restraints in- 292 
clude dihedral angles, hydrogen bonds derived from H/D exchange experiment and NOE 293 
distance restraints [40-42]. Totally one hundred structural models were built, and one 294 
structure was selected as model to understand the structure of S-TM in DPC micelles. 295 
Further restraints will be important for determining the orientation of the two helices in 296 
S-TM.  297 

4.3. Collection of the 1H-15N HSQC spectrum in D2O 298 
The hydrogen-deuterium exchange experiment was performed to identify residues 299 

that form hydrogen bond. Recombinant S-TM was first purified into DPC micelles as pre- 300 
viously described. The sample was then frozen in liquid nitrogen. After removing water 301 
from the sample through lyophilization, 99.9% D2O was added into the sample. The sam- 302 
ple was then subject to data acquisition. The acquisition time of the 1H-15N HSQC spec- 303 
trum took approximately 10 min. The data was then processed and visualized. Residues 304 
that exhibited cross peaks in the 1H-15N HSQC spectrum are involved in hydrogen bond 305 
formation or buried deeply in the micelles.  306 

4.4. Relaxation analysis 307 
T1, T2 and 1H-15N steady-state NOE values [43] were obtained by collecting the data 308 

acquired at 313 K on a Bruker Avance 600 MHz spectrometer. For T1 and T2 measurements, 309 
pseudo-3D experiments with different delays were collected and processed as described 310 
previously [44-46]. Steady-state 1H-15N NOEs (hetNOE) were calculated by analysing two 311 
datasets that were collected with and without initial proton saturation for a period of 3 s 312 
[47].  313 

4.5. Cross-linking experiment  314 
Cross-linking experiment using glutaraldedyde (GA) was performed as previously 315 

described [20, 21, 34, 46]. Briefly, the mixture containing 25 µM S-TM in a buffer contain- 316 
ing 20 mM sodium phosphate, pH6.5 and 15 mM DPC. The GA concentration was added 317 
to 16 mM concentration. The mixture was kept and the samples at different time points 318 
were collected and mixed with SDS loading dye. The samples were then subjected to anal- 319 
ysis by SDS-PAGE.   320 

5. Conclusions 321 
The structure of S-TM in detergent micelles was explored. A flexible linker was iden- 322 

tified between HR2 and the TM helix. The structure and dynamics of S-TM in DPC mi- 323 
celles show that the TM domain adopts a helix, and some residues might undergo ex- 324 
changes. Current study provides structural information to understand the function of S- 325 
protein.  326 

Supplementary Materials: The following supporting information can be downloaded at: 327 
www.mdpi.com/xxx/s1, Figure S1 Purification of S-TM for structural studies; Figure S2 1H-15N- 328 
HSQC spectrum of S-TM in DPC micelles; Figure S3 1H-15N-HSQC spectrum of S-TM reconstituted 329 
in DPC micelles and in D2O; Figure S4 Cross-linking of S-TM in DPC micelles using glutaraldehyde 330 
(GA). 331 
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