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Abstract—This article introduces a novel self-supervised
method that leverages incoherence detection for video representa-
tion learning. It stems from the observation that the visual system
of human beings can easily identify video incoherence based
on their comprehensive understanding of videos. Specifically, we
construct the incoherent clip by multiple subclips hierarchically
sampled from the same raw video with various lengths of incoher-
ence. The network is trained to learn the high-level representation
by predicting the location and length of incoherence given the
incoherent clip as input. Additionally, we introduce intravideo
contrastive learning to maximize the mutual information between
incoherent clips from the same raw video. We evaluate our
proposed method through extensive experiments on action recog-
nition and video retrieval using various backbone networks.
Experiments show that our proposed method achieves remark-
able performance across different backbone networks and dif-
ferent datasets compared to previous coherence-based methods.

Index Terms—Action recognition, neural networks, self-

supervised learning, video representation learning.

I. INTRODUCTION

ULLY supervised learning has achieved great success

in video representation learning during the past decade.
However, its remarkable performance heavily relies on a large
amount of labeled data, which requires considerable resources
and time to annotate. Moreover, fully supervised methods are
designed to extract task-specific representations, which limits
their transferability and generalization capability. To address
the aforementioned challenges, recent works have paid more
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attention to self-supervised learning, which aims to extract
generalized representations from more accessible unlabeled
data on the Internet.

The core of self-supervised methods is to design a pretext
task that prompts the network to learn effective representations
from unlabeled data. Existing self-supervised methods can be
broadly categorized into two types: 1) dense prediction and
2) spatiotemporal reasoning. Dense prediction-based methods
require the network to predict parts of low-level representa-
tions, such as future frames [1], [2] and optical flows [3].
Although these methods can achieve outstanding performance,
they usually involve laborious hand-crafted features (e.g., opti-
cal flow [3]) or complicated computation process [4], [5],
which are both time consuming and resource expensive. To
improve the efficiency, recent spatiotemporal reasoning meth-
ods, such as clip order prediction [6], [7], [8], [9], video
speed prediction [10], [11], [12], and spatiotemporal statistic
prediction [13] tend to learn high-level spatiotemporal correla-
tions in raw videos. Specifically, methods based on clip order
prediction attempt to leverage video coherence for representa-
tion learning, where the supervision signal is generated from
frame order disruption. In this article, we propose a novel task,
named incoherence detection, to leverage video coherence for
video representation learning from a new perspective.

Intuitively, our visual systems can effortlessly identify the
incoherence of videos (e.g., loss of frames caused by con-
nection latencies) by detecting abnormal motion based on our
understanding of videos. In this case, the incoherence can be
viewed as noise to motion information. Detecting incoherence
requires the network to possess a comprehensive understand-
ing of videos which motivates this article. Take Fig. 1 as an
example: one can easily tell the difference between coher-
ent and incoherent videos based on their understanding of the
action “High Jump.” Specifically, we can deduce that the ath-
lete should be leaping over the bar in the next frame given
previous frames (1 and 2). However, in frame (4), the athlete
suddenly appears on the right side of the bar without the pro-
cess of leaping, which is inconsistent with our deduction. This
bi-directional reasoning of video contents could be an effec-
tive supervision signal for the network to learn the high-level
representations of videos.

Inspired by the aforementioned observation, we propose a
simple-yet-effective method named video incoherence detec-
tion (VID) for self-supervised video representation learning.
During the self-supervised training process of VID, each
training sample is generated as an incoherent clip, constructed
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Fig. 1. TIllustration about how video incoherence affects motion information.
Both videos demonstrate the action “High Jump”. The incoherence caused by
losing frame (3) leads to a distortion of athlete motion between frame (2) and
frame (4) in the incoherent video, which is incompatible with our understand-
ing of the action “High Jump”. This observation suggests that incoherence
detection requires a comprehensive understanding of videos.

by multiple subclips from the same raw video. Specifically,
subclips are hierarchically sampled from the raw video given
the random incoherence location and length. The incoherent
clip is then constructed by concatenating the subclips along
the temporal dimension. Different from previous coherence-
based methods [6], [7], [8], [9] which undermine temporal
orders, VID preserves the sequential relationship of the raw
video during the generation process. The network can therefore
learn temporal representations for incoherence detection.

Given the incoherent clips as input, the network is trained to

detect the incoherence by two novel pretext tasks that predict
the location and length of incoherence, denoted as Incoherence
location detection (LoD) and Incoherence length detection
(LeD), respectively. In addition, intravideo contrastive learning
(ICL) is adopted as an optimization objective to maximize the
mutual information between different incoherent clips from
the same raw video.

The main contributions of our work include

1) Motivated by the fact that detecting incoherence requires
semantic understanding, we propose a simple-yet-
effective self-supervised method for video representation
learning, called VID, utilizing a single temporal trans-
formation for video representation learning.

2) By detecting incoherence within videos, our proposed
VID leverages spatiotemporal relationships for self-
supervised learning from a different perspective while
avoiding trivial solutions.

3) We evaluate our VID using three different back-
bones in two downstream tasks across three datasets.
Extensive experiments show that our VID achieves
the state-of-the-art (SOTA) performance on action
recognition and video retrieval compared to previous
coherence-based methods.

II. LITERATURE REVIEW
A. Self-Supervised Learning

Despite the success of fully supervised learning in the
video domain [14], [15], [16], [17], [18], these methods

require expensive human annotation to generate ground-truth
labels, limiting their practicality. To alleviate the depen-
dency on human annotation, previous works propose different
learning strategies to extract video representations without
labeling all training samples, including unsupervised learn-
ing [19], [20], semisupervised learning [21], [22], [23], domain
adaptation [24], [25], [26], and self-supervised learning.

Specifically, self-supervised learning has attracted more and
more attention in video representation learning, since it is
tailored to leverage a large amount of unlabeled data from
the Internet without requiring laborious human annotation.
Different from semisupervised or domain adaptation methods
which attempt to alleviate the labeling effort in the down-
stream tasks (e.g., [21] reduces the labeling effort in the video
domains by transferring knowledge from the image domain),
self-supervised methods aim to provide effective pretrained
models without any human annotations during the pretrain-
ing stage. It builds upon some prior works, such as [27]
which reveals the benefit of additional auxiliary during tra-
ditional fully supervised training, and [28] which explicitly
introduces the dual-stage learning process: the network is
purely trained on the pretext task and then transferred to
the target problem. This dual-stage training procedure is now
termed self-supervised learning and has been widely explored
in images [29], [30], [31] or natural language [32], [33]. Early
works have expanded self-supervised methods from other
domains to videos, such as DPC [34] inspired by CPC [35] in
the image domain and transformer-based methods [36], [37]
inspired by BERT [32].

Recent self-supervised methods for video representation
learning can be categorized into two types: 1) dense prediction
and 2) spatiotemporal reasoning. Dense prediction meth-
ods [1], [2], [3], [4], [5], [34] require the network to predict
the low-level information of videos. For instance, Vondrick
et al. [1] and Srivastava et al. [2] proposed to learn video rep-
resentations by predicting future frames whose foreground and
background are generated from independent streams. To lever-
age multimodality video information, some previous works
propose to generate supervision signals through the input of
3-D videos [3] or RGB-D data [38]. Another trend is to
utilize estimated modalities (e.g., tracking trajectories [39]
or optical flow [40]) that embed rich temporal relation-
ships to obtain supervision signals so that the network can
capture more accurate motion information during pretrain-
ing. Compared to spatiotemporal reasoning methods, dense
prediction methods can usually achieve better performance due
to their sophisticated training process [1], [2] and the utiliza-
tion of multimodality [3], [38], [39], [40]. However, dense
prediction methods inevitably utilize additional decoders to
output low-level information in the pretraining stage, introduc-
ing extra computational complexity and inefficiency compared
to spatiotemporal methods.

Instead of directly predicting low-level information, recent
methods have proposed utilizing spatiotemporal reasoning to
generate supervision signals based on correlations or charac-
teristics of videos. In contrast to dense prediction methods,
spatiotemporal reasoning methods explore various pretext
tasks to generate effective supervision signals, such as tem-
poral order prediction [6], [7], [8], [9], [41] and video speed
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prediction [10], [11], [12]. Inspired by the sequential relation-
ships of videos, previous works [7], [8], [9], [42] propose
to predict or identify the correct frame order given clips
shuffled along the temporal dimension. Further advance in
this direction includes Xu et al. [6] who applied the order
prediction method with 3-D-CNN and Kim et al. [41] who
expanded the order prediction to the spatial dimension. On the
other hand, recent methods [10], [11], [12] propose to extract
effective representations by predicting the speed of videos.
Specifically, Yao et al. [12] and Wang et al. [10] combined
the speed prediction task with regeneration and contrastive
learning, respectively. Jenni et al. [11] proposed to recognize
various temporal transformations under different speeds and
Chen et al. [43] achieved SOTA performance by reformulat-
ing the speed prediction task into a relative one. Inspired by
humans’ sensitivity toward incoherence in videos, we argue
that VID requires a semantic understanding of video contents,
which can be explored to learn effective video representations.

B. Contrastive Learning

Contrastive learning has demonstrated its effectiveness in
self-supervised learning. In the image domain, multiple meth-
ods [29], [30], [31], [44] have been proposed to extract effec-
tive image representations by contrastive learning. Building
upon this success, recent methods [10], [45], [46], [47], [48]
explore different manners to adopt contrastive learning in
the video domain. The core idea is to maximize the mutual
information by contrasting positive pairs and negative sam-
ples. For instance, Wang et al. [10] and Dwibedi et al. [45]
proposed to align spatiotemporal representations of the same
action or same context. Yao et al. [48] conducted con-
trastive learning from spatial, spatiotemporal, and sequen-
tial perspectives, while Qian et al. [49] further simplified
the spatiotemporal contrastive reasoning and achieved SOTA
performance by utilizing carefully designed data augmenta-
tions and deeper networks. Building upon the success of
MoCo [46], Pan et al. [50] integrated the momentum queue
in [46] with temporal adversarial learning between the input
and its augmented variant to extract temporal robust rep-
resentations of input samples. Additionally, considering the
degradation effect of the momentum queue, a temporal decay
mechanism is designed to attend to more recent keys in the
queue. Han et al. [51] further expanded the contrastive learn-
ing to a novel co-training scheme by co-training the network
for each modality through contrastive loss, which leverages the
complementary information from multiple modalities. Inspired
by the success of BERT [32], VATT [52] is proposed to capture
cross-modal video representations from four different modal-
ities (raw videos, audios, and text) by utilizing multimodal
contrastive loss with transformer-based networks. By com-
bining temporal consistency with existing imaged-based con-
trastive learning methods, Feichtenhofer et al. [53] revealed
the potentials of contrastive learning, achieving competitive
or even superior performance compared to fully supervised
learning.

Despite the outstanding performance methods based on pure
contrastive learning, they usually demand a relatively large

batch size [48], [49], [52] or specifically designed mechanisms
(e.g., the memory bank [29], [54] or momentum queue [46])
to ensure a sufficient number of negative samples for each
update. Therefore, the performance of contrastive loss might
be limited when encountering situations with limited compu-
tational resources. Instead of using pure contrastive learning,
we utilize ICL as an additional objective to maximize the
mutual information between different incoherent clips from
the same video. With the guidance of other training objectives,
the improvement brought by contrastive loss is noticeable even
without adopting a large batch size during the pretrained stage.

III. PROPOSED METHODS

Coherence is one of the crucial properties of videos as
natural videos are formed by sets of frames coherently
observed. Our visual systems can easily identify incoherence
caused by loss of frames within a video clip, which demon-
strates that the detection of incoherence requires a semantic
understanding of videos. This observation motivates us to
develop a self-supervised method by leveraging incoherence
detection for video representation learning.

In this work, we propose to extract effective spatiotemporal
representations via VID based on a simple temporal transfor-
mation in a self-supervised manner. We first illustrate how
to generate incoherent clips from raw videos. Based on these
generated clips, LoD, LeD, and ICL are proposed for self-
supervised learning. To clarify the whole learning procedure,
we summarize the overall learning objective and framework
of VID in Section III-C.

A. Generation of Incoherent Video Clips

To utilize VID, we first generate incoherent clips from raw
videos. Given a raw video V, the incoherent clip Vipc is con-
structed by k subclips Vi, Va, ..., Vi sampled from V, with a
certain length of incoherence between each subclip. The loca-
tion Ljoc and length ;. of incoherence are both randomly
generated. The length of incoherence [jp. between subclips is
limited within the range

lne € [0, gm0 1, 1] (1)

mnc ’ "inc mnc

where lﬁic“ and [;32* are both hyperparameters indicating the
upper and lower bounds of the incoherence length, respec-
tively. The purposes of this constraint are twofold. First, this
constraint determines the number of classes for our following
self-supervised task LeD. Second, this constraint prevents the
length of incoherence between subclips from being either too
vague or too obvious, thereby avoiding learning trivial solu-
tions. For simplicity, we illustrate how to generate Vi by two
subclips as an example in Fig. 2.

1) Selection of Incoherence Location: The incoherence
location Ljo. indicates the relative concatenation location
between two subclips. Formally, given the desired length of the
incoherent clip /y, the location of incoherence Lo is sampled
as follows:

Lhe{l,2,....;1p—1}, bh=Ilh—-1h 2
Lloczll_1 (3)
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Fig. 2. Generation process of the incoherent clip Vjp. Indices 1-16 in square
boxes denote the frame indices in the raw video V while indices (0-7) denote
the relative frame indices in Vj,c. Squares in shadow and color refer to the
sample range and sampled frames for the corresponding subclip, respectively.
Vinc is generated as the concatenation of V| and V), along the temporal dimen-
sion as shown in (e). (a) Raw video V. (b) Selected incoherence location Lj.
(c) Sampling of the first subclip V. (d) Sampling of the second subclip V.
(e) Temporal concatenation.

where I} and [, are the length of Vi and V, as illus-
trated in Fig. 2(b), where squares in different colors refer
to allocated frame positions for different subclips in Vipc.
Lioc indicates the relative location of incoherence, where sub-
clips concatenate and also the label for the following LoD
task.

2) Hierarchical Selection of Subclips: Given the subclip
lengths /1 and I, subclips V| and V; are hierarchically sampled
from the raw video V with incoherence between each other.
The incoherent clip Vipc is generated as the temporal concate-
nation of Vi, and V,. While previous works [10] propose to
sample frames by looping over the raw video, this strategy is
not compatible with our proposed VID since it could introduce
unexpected incoherence when looping from the end to the start
of the video. Instead, to preserve the sequential relationship
of the raw video, we propose a hierarchical sampling strat-
egy that maximizes the sample range of each subclip while
satisfying the constraint in (1).

Illustrated as the upper row in Fig. 2(c), given the raw
video V of the length 7, the sample range 77 of the first
subclip V is determined by reserving sufficient frames for
subsequent subclips. This allows the following subclip V> to
be sampled from the rest of the raw frames wherever the V)
locates in T, which preserves the sequential relationship and

satisfies the constraint in (1). Formally, given /, and lﬁlcn, the

sample range 7 is computed as

A = 4
R )

Tl {mm mm_'_l’“_’tllnax} (6)
where tﬁ“in and " are the lower and upper bound of the
range 77. Given the range Tp, V; is uniformly sampled as
V1 € T illustrated as the lower row in Fig. 2(c).

Subsequently, the range of the second subclip 7, is deter-
mined by the sampled subclip V; and the range of linc in (1).
As shown in the upper row of Fig. 2(d), given the raw frame
index of the last frame in V; denoted as m; = max(})), the
sample range 7> is computed as

AN = g 4 [T 4] )

L = m1n(m1 + 0+ D, T) ®)

T2 — {tanm m1n +1 max} (9)

where tmm and £;®* are the upper and lower bounds which

ensure that linc, the length of incoherence between ), and V),
always satisfies the constraint in (1). Similar to Vi, the second
clip V, is uniformly sampled as V, € T, illustrated as the
lower row of Fig. 2(d).

Given the subclips V| and V>, the incoherent clip Vi, and
its label Lje, for Incoherence LeD task are generated as

Vinc = Vl S>) VZ (10)
line = min(V») — max(Vy) (11
Llen = linc - lfgi;n (12)

where @ indicates the concatenation of two subclips V; and
V), along the temporal dimension.

B. Optimization Objectives

We propose two novel self-supervised tasks, including
Incoherence LoD and Incoherence LeD, to detect the inco-
herence in incoherent clips while maximizing the mutual
information between different incoherent clips from the same
raw video by ICL. Specifically, given an incoherent clip Viyc,
the high-level representation is first extracted as i = f(Vinc),
where f(-) denotes the encoder. Given the representation #, the
optimization objectives of VID include LoD, LeD, and ICL.

1) Incoherence Location Detection : Given the high-level
representation # and its incoherence location label Ljoc, the
network is required to predict the location of incoherence
in Vinc. This is mainly inspired by the sensitivity of human
perception toward the loss of frames within video clips. By
identifying the abnormal motion caused by incoherence, the
network is driven to learn semantic representations of videos.
The LoD task is formulated as a single-label classification
problem. Given the representation 4 and label Lj,c, the network
is optimized by the cross-entropy loss formulated as

lo—1

5 pein
i=0

exp (z ( loc)

ILop = —
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where 71 € RO~! is the output of fully connected layers
$'°°(-) given the representation h as input. !¢ € Rob~1 jg
the one-hot label vector whose element at L. equals 1. In
practice, given a mini-batch of representations Z'°¢, (13) is
applied to each representation in Z'°¢ € RV*(U0=1  where N
denotes the batch size. The Lo loss is then calculated as the
average loss of representations in Z!°¢,

2) Incoherence Length Detection: In addition to LoD, the
network is required to predict the length of incoherence given
the high-level representation 4 and its corresponding label Lie,
of (12). The proposed LeD task is designed as a regularization
measure to avoid trivial learning. In some cases, incoherence
may occur at the period when the distribution of low-level rep-
resentation intensively changes (e.g., intensive movement of
the camera or sudden changes in light conditions). This could
cause a distinct difference in low-level representation between
subclips of the incoherent clip Vi, leading to trivial learn-
ing when adopting LoD as the only optimization objective.
Compared with LoD which extracts semantic representation,
our proposed LeD can be regarded as a simple yet challenging
task that requires the network to deduce the length of incoher-
ence with respect to the raw video. In practice, although the
accuracy of LeD is relatively low (with Topl at about 25%),
our ablation study shows that it can bring noticeable improve-
ment as it can effectively prevent VID from learning trivial
solutions based on low-level information.

Similar to LoD, the LeD task can also be formulated as a
classification problem, where cross-entropy loss is utilized for
optimization as

Almc

len)
ILep = Z " log

exp (z

where 7" € RO~! js the output of fully connected layers
$'°"(-) given h as input. y'" € R4 is the one-hot label vector
of incoherence length and Al is the difference between the
upper bound and lower bound of incoherence length. Similar
to LoD, (14) is also applied to all representations of the
mini-batch Z'®" € RVN*Ahne  whose loss Liep is calculated
as the average loss of Z!,

3) Intravideo Contrastive Learning: Contrastive learning
can effectively extract the mutual information between var-
iously augmented samples from the same source. Recent
works [10], [48] demonstrate its great potential, exceeding
other self-supervised or even supervised methods when adopt-
ing a large batch size. In this work, we include ICL as an extra
optimization objective to maximize the mutual information
between different incoherent clips from the same video. This
is inspired by the fact that human beings can correctly rec-
ognize video actions based on the mutual information shared
across the video regardless of the location and length of inco-
herence. Although the motion of different incoherent clips
is distorted in different manners, their representation should
be homogeneous since they indicate the same video contents,
which can therefore be leveraged as the supervision signal for
video representation learning.

Formally, given a mini-batch of N raw videos V =
{V1, Va, ..., Vy}, two incoherent clips are randomly gener-
ated for each raw video V; € V as in Section III-A. The
incoherent clips from the same raw video V; are considered
as the positive pair denoted as {V} ., Vl’nc} while those from
dlfferent raw videos are regarded as negative pairs denoted as
{Vi... Vi | kK # i}. Each incoherent clip Vl is then fed to
the network f(-), forming the high-level representation h;. The
representation A; is subsequently passed to a fully connected
layer ¢°!(-) followed by a nonlinear ReLU activation, resulting
in features z{ !"as the input of our proposed ICL. Provided with
features of the positive pair {zl , 2!y and features of negative
pairs {zl ,zk } k # i, the contrastive loss is computed as

1 2N ( exp (s ( (Zlcl’ Zld)) )
— 5 2 log —d .
2N i=1 exp( ( ERY )) +D(Z))

e (5 4)

k#i

LicL =

15)

D@) (16)

where s(u, v) = u'v/||lul|||v| indicates the similarity between
feature u and v. D(i) is the summation of exponential similarity
between features of negative pairs.

C. Network Structure and Training

The overall network structure is illustrated in Fig. 3. Given
the unlabeled raw video, the incoherent clips are first gen-
erated as described in Section III-A, where each raw video
randomly generates two different incoherent clips as shown
in Fig. 3(a). The batch of incoherent clips is then fed to the
encoder f(-) implemented as the 3-D CNN backbone. The
ultimate optimization objective is formulated as

L =0aliop+ BLred + AL1CL (17

where «, B, and A are the coefficients of three loss terms from
the subtasks, respectively.

IV. EXPERIMENTS

In this section, we present thorough experiments to justify
the effectiveness of our proposed VID. We first illustrate our
experimental settings and subsequently justify our VID design
through detailed ablation studies. Finally, VID is evaluated on
two downstream tasks, including action recognition and video
retrieval in comparison with SOTA methods.

A. Experimental Settings

1) Datasets: We evaluate our VID across three action-
recognition datasets, including UCF101 [54], HMDBS51 [55],
and Kinetics-400 [56]. UCF101 is a widely used video dataset
for action recognition, which contains 13320 videos with 101
action categories. HMDBS51 is a relatively smaller yet chal-
lenging dataset for action recognition, including about 7 000
videos with 51 action classes. Both UCF101 and HMDB51
are divided into three training and testing splits. Kinetics-400,
denoted as K-400, is a large dataset for action recognition,
containing about 304 000 videos with 400 action classes col-
lected from the online video platform YouTube. Same as
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Fig. 3. Structure of our proposed VID method. The first row indicates two raw videos V; and V5, each of which generates two incoherent clips, respectively.
The generated incoherent clips are then fed into a single 3-D CNN backbone. The extracted high-level representation H is subsequently passed to three
different linear or nonlinear layers to perform three different subtasks, including Incoherence LoD, Incoherence LeD, and ICL. (a) Generation of incoherent
clips. (b) 3-D CNN backbone. (¢) Incoherence location: Z1°¢ (d) Incoherence length: Zlen (e) ICL: z¢.

the setting of prior work [10], [11], we utilize the training
split of Kinetics-400 and the training split 1 of UCF101 for
self-supervised pretraining.

2) Backbone Networks: To fairly compare our proposed
method with others [6], [10], we evaluate our proposed VID
with three different 3-D CNN networks in our experiments,
including C3D [57], R3D [58], and R(2+41)D [59]. The afore-
mentioned backbones have been widely used to evaluate self-
supervised methods in previous research [6], [10], [12], [60].
Specifically, C3D [57] is constructed by direct extending 2-D
CNN kernels to 3-D, while R3D [58] introduces the resid-
val connections from 2-D CNNs to 3-D CNNs. Following
previous works [11], [12], [41], we utilize R3D-18 which is
the 18-layer variant of R3D. R(2+1)D [59] proposes to replace
the traditional 3-D kernel with the combination of a 2-D kernel
and a 1-D kernel for spatial and temporal feature extraction,
respectively. In this work, we mainly conduct our experiments
with the 18-layer variant of R(241)D thanks to its superior
performance compared to others.

3) Augmentation and Other Details: Following the setting
of prior work [10], [11], each incoherent clip includes 16
frames. The frame interval for subclip sampling is 1 (i.e., the
same raw frame interval we used to sample subclips V; and
V> in Fig. 2) and the range of incoherence length is set as
linc € {3,4, ..., 10}. When pretraining on UCF101, we follow
the epoch setting in [10], [61] which increases the epoch size
from 9k to 90k (i.e., equivalent to 180 raw epochs) and include
color jittering along the temporal dimension. Such epoch set-
ting is sufficient to reach convergence on both UCF101 and
K400 when training with VID (e.g., LoD can achieve Topl of
more than 90%). Frames are resized to 128 x 171 and then
randomly cropped to 112 x 112. The whole input clip is sub-
sequently flipped horizontally with a probability of 50%. The
network is trained with a batch size of 30. The stochastic gra-
dient descent [62] is utilized for optimization with the weight
decay set to 0.005 and the momentum set to 0.9. The learn-
ing rate is initialized as 0.001 and divided by 10 every six
epochs with a total training epoch of 18. For the coefficient
settings, here we empirically set coefficients of subtasks «, 8,

TABLE I
ABLATION STUDY OF RANGE OF INCOHERENCE LENGTHS, JITTERING,
AND THE HIERARCHICAL SAMPLING METHOD

Method | Jittering | Range of l;. | UCF101(%)
Random v - 56.7
v [2,10] 76.7
v [4,10] 77.3
v [5,10] 76.9
v (3, 6] 76.8
VID v [3, 8] 7175
v [3,12] 77.1
v [3,14] 76.7
v [3,10] 78.1
X [3,10] 76.3

and A to 1, 0.1, and 0.1 following the same settings in [10].
We conduct our experiments utilizing PyTorch [63] with two
NVIDIA Tesla P100.

B. Ablation Studies

In this section, we justify the design of our proposed VID
by ablation studies. We first illustrate the optimal range of
the incoherence length and the necessity of the hierarchical
sampling process. Subsequently, different combinations of our
proposed pretext tasks are evaluated to justify our proposed
methods. Our proposed incoherence detection is addition-
ally evaluated with various backbones compared to previous
coherence-based methods. All our ablation studies are con-
ducted with R(2+1)D [59] pretrained on UCF101, unless
otherwise specified.

1) Range of the Incoherence Length: We first explore the
best range of incoherence length [ipc. Illustrated in Table I,
the experiments are conducted by changing either the lower
bound lﬁicn or the upper bound /7%, As lmicn increases from 2,
the performance of VID improves and peaks at 78.1% with
lﬁ}lc“ = 3, while the performance begins to decline when lmln
further expands. When lm‘Cn is smaller than 3, the 1nc0herence
between subclips is too difficult for the network to identify.
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TABLE 11
ABLATION STUDY OF HIERARCHICAL SAMPLING. HERE, DISABLING
HIERARCHICAL OPTION REFERS TO LOOP-OVER SAMPLING

Backbone | Hierarchical | UCF101(%) | HMDB51(%)
o | g 02 7
RO | 736 #0
wean | 8| m | R

The further increase of the lower bound degenerates the vari-
ety of incoherence length, leading to a drop in performance.
Similar to the lower bound, when the upper bound of
incoherence length grows from )% = 6, the performance of
VID rises consistently from 76.8% and then reaches a climax
when lirggx = 10, whereas a deteriorated performance can
be observed as upper bound further expands, dropping from
78.1% with [[%* = 10 to 76.7% with [[3* = 14. As [73*
increases, the sample range of incoherence becomes more
abundant, while the incoherence becomes too obvious when
[ha* > 10. This observation indicates that an inappropriate
range of /i;c can result in too vague or too obvious incoher-
ence, which leads to inferior performance. We thus set the
range of linc as [3, 10] in the following experiments.

2) Hierarchical Sampling Versus Loop-Over: As men-
tioned in Section III-A, the generation of incoherent video
clips is specifically designed to avoid undesired incoher-
ence caused by conventional loop-over sampling. Here, we
justify the necessity of our proposed hierarchical sampling
method in comparison with the loop-over sampling method.
The loop-over sampling randomly selects the start frame of
incoherent clips across the raw video without any constraint
and will loop to the beginning of the raw video if the desired
frame exceeds the length of the video. As shown in Table II,
noticeable improvements can be observed across three dif-
ferent backbones on UCF101 and HMDBS51 when adopting
hierarchical sampling. Specifically, our hierarchical method
achieves an improvement of more than 1.0% on all back-
bones when evaluated on UCF101 for action recognition. Such
performance gap further expands to about 3.0% when adopting
more competitive backbones, including R3D and R(2+1)D.
When testing with HMDBS51, the performance improvements
brought by hierarchical sampling become more significant on
all backbones, each of which exceeds 2.0% compared to the
loop-over strategy. Such observation proves the effectiveness
and necessity of our proposed hierarchical sampling in VID.

3) Different Subtasks: We further evaluate the performance
of different subtasks. As shown in Table III, when utilizing a
single subtask, networks pretrained with any subtask signif-
icantly exceed random initialization with a relative improve-
ment of more than 25.0%. The network with LoD obtains the
highest performance of 75.4% on UCF101, which justifies the
dominant effect of LoD in VID. The network with ICL also
achieves a competitive performance of 72.1%. However, when
optimizing with only LeD, the network is required to directly
predict the incoherence length without locating it. Therefore,

TABLE III
ABLATION STUDY OF DIFFERENT SUBTASKS

Sub-tasks LoD/« LeD/pB ICL/ X | UCF101(%)
Random Init - - - 56.7
LoD 1 - - 754
LeD - 1 - 70.9
ICL - - 1 72.1
LoD+LeD 1 0.1 - 77.3
LoD+ICL 1 - 0.1 76.9
LeD+ICL - 1 0.1 71.8
LoD+LeD+ICL 1 0.1 0.1 78.1

EVCOP mVCP BVID (Ours) EVCOP ®mVCP ®VID (Ours)
80 44

2
=

40 39.3

3
~
»
=)

=)
@
w
~

Accuracy (%)
Accuracy (%)

=
'

=)
=l

24

C3D R3D R(2+1)D C3D R3D R(2+1)D
Network Network
(a) (b)

Fig. 4. Comparison with coherence-based methods. Even without ICL, our
VID outperforms previous coherence-based methods by more than 1.4% on
(a) UCF101, while this improvement further expands to more than 3.1% when
testing on (b) HMDBS51. This performance improvement is consistent across
three different backbones.

the network cannot fully leverage incoherence detection in
videos, leading to an inferior performance of 70.9%.

In terms of arbitrary pairs of subtasks, the LoD-based
pairs (LoD+LeD and LoD+ICL) surpass the single LoD with
noticeable margins of more than 2.0%. This justifies the effec-
tiveness of LeD and ICL as additional objectives. On the
other hand, an inferior performance of the LeD-based pair
(LeD+ICL) can be observed, mainly due to the absence of
LoD. Compared with LeD, the additional ICL of LeD-+ICL
slightly improves the performance by 0.9% since ICL relies
less on the identification of incoherence locations. When
compared with ICL, however, the performance of LeD+ICL
marginally decreases by 0.3%, mainly because the network
is not able to identify the incoherence without LoD, not to
mention deducting the length of incoherence (i.e., LeD). This
observation reveals the important role of LoD in VID, which
also inspires us to maintain the dominant coefficient of LoD
in the following experiments.

4) Comparison With Coherence-Based Methods: To justify
the effectiveness of incoherence detection, we evaluate our
VID without additional ICL subtask compared to previous
coherence-based methods [6], [60] utilizing order prediction.
Mlustrated in Fig. 4, our VID outperforms previous coherence-
based methods across various backbones and datasets. On
UCF101, VID exceeds the previous VCOP [6] and VCP [60]
by 4.3%-7.9% and 1.4%-11.0%, respectively. On HMDBS5]1,



VID (w/o LeD) |

Visualization of the heat map. The indices below indicate the cor-
responding subclips to which the frame belongs. The first row indicates that
using LeD leads to a more stable concentration on motion areas, while the
one without LeD may focus on the dynamic background instead.

Fig. 5.

the proposed VID surpasses VCOP [6] and VCP [60] by
over 10% relatively. The improvement indicates that incoher-
ence detection requires a more comprehensive understanding
of videos compared to frame-order reasoning.

5) Visualization Comparison: We visualize heat maps of
extracted representation to justify our proposed VID as shown
in Figs. 5 and 6. Here, heat maps are generated based on
Grad-CAM [67] utilizing the representations from the last con-
volution layer. To validate the regularization effect of LeD, we
present corresponding heat maps from the network pretrained
with or without LeD illustrated in Fig. 5. As shown in the last
two rows, when there is a subtle difference between scenes of
subclips, networks pretrained with or without LeD both focus
on the actors to detect abnormal motion caused by incoher-
ence, which proves that incoherence detection requires motion
understanding. When scenes change intensively as shown in
the first row, however, the network without LeD is distracted
by the dynamic background. Yet the network with LeD main-
tains its concentration on motion areas, which justifies that the
utilization of LeD increases the robustness of VID toward the
severe changes of low-level information, which can therefore
avoid trivial learning.

To justify the overall effectiveness of our proposed VID,
more heat maps are presented in Fig. 6. Each row is aug-
mented frames extracted from the test sample of UCF101 [54].
The first column is the original frame representing the input
sample and the following columns are heat maps visualized by
Grad-CAM [67] of different subclips. The heat maps provided
in Fig. 6 justify our assumption that incoherence detection
requires an understanding of motion in videos. For example,
given the golf swing in the first row, the network pretrained
with our VID concentrates on the upper body of the actor to
detect the movements for incoherence detection. Additionally,
when there are intensive changes between scenes of differ-
ent subclip, our VID can maintain its concentration on the
motion areas to detect incoherence. For instance, given input
indicating horse racing in the last row, the network pretrained
with our VID continuously focuses on the horses and riders
regardless of the intensive changes of backgrounds.

C. Evaluation of Self-Supervised Representation

1) Action Recognition: To verify the effectiveness of our
proposed VID, we evaluate our VID with different backbones
on action recognition, which is a primary downstream task
adopted in prior works [10], [11], [12]. For action recognition,
the network is initialized with the pretrained weights while the
fully connected layer is randomly initialized. During the fine-
tuning stage, the training split 1 of UCF101 and HMDBS51
are applied to fine-tune all parameters. The whole network is
trained using the cross-entropy loss with an initial learning
rate of 0.003. Other augmentations and parameter settings are
the same as in the pretraining stage. For testing, following
the same evaluation protocol of previous works [10], [12],
we uniformly sample ten clips from each video followed by
a center crop. The final predictions for each video are the
average result of all sampled clips.

As shown in Table IV, our proposed VID achieves SOTA
results, outperforming all previous spatiotemporal reasoning
methods built upon a single data transformation. For C3D,
while achieving a competitive performance on UCF101 with
a marginal gap of 0.7% compared to DBA [42], our VID
surpasses the performance of DBA [42] on HMDBS51 for
more than 3.5%. For R3D, VID exceeds PRP [12] and
ST-Puzzle [41], which are the previous SOTA method on
UCF101 and HMDB51, with noticeable margins of 7.1% on
UCF101 and 5.4% on HMDBS51. With R(2+1)D pretrained
on UCF101, VID achieves competitive performance with a
minor improvement of 0.3% on UCF101 compared to the
previous SOTA method STS [40]. It is worth mentioning
that STS [40] utilizes RGB and estimated optical flow as
an additional modality during the pretrained stage, while our
VID achieves better performance utilizing pure RGB. When
pretrained on Kinetics-400, the margins of improvement fur-
ther expand to 0.7% and 1.4%, respectively. The noticeable
performance improvements justify that VID can learn more
abundant spatiotemporal representation compared to previous
single-transformation methods.

In Table IV, we additionally include the results of RTT [11]
which assembles multiple transformations, leading to supe-
rior performance compared to single-transformation methods.
Nevertheless, for C3D, VID is the only single-transformation
method that outperforms RTT by 0.3% on UCF101 and pro-
vides competitive performance on HMDBS5I1. It is possible to
further improve the performance of ensemble-based methods
by including our VID, while we mainly focus on leveraging
video coherence by using a single temporal transformation
in this work. Moreover, some previous SOTA methods that
utilize different evaluation protocols are also illustrated at
the bottom section of Table IV, where MemDPC [5] uti-
lizes a deeper backbone R2D3D-34 and CAVP [65] adopts
higher input resolutions and a more complex network. While
CSJ [64] outperforms our VID on HMDBS51 when pretrained
on K400 with a backbone of the same depth, our VID signifi-
cantly surpasses its performance when pretrained on UCF101,
with a performance gap of 7.4% and 5.5% on UCF101 and
HMDBS51, respectively. Moreover, when compared to some
previous methods based on multimodalities (e.g., STS [40]
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Heat map visualization of our VID. The column “Input” contains original frames from the test samples. The following frames are sampled from

different subclips. Our visualization shows that the network concentrates on the motion areas rather than backgrounds when pretrained with our VID.

TABLE IV
PERFORMANCE OF ACTION RECOGNITION COMPARED TO PREVIOUS METHODS. THE FORMER FIGURE OF INPUT SIZE INDICATES THE INPUT FRAME
NUMBER, WHILE THE LATTER REPRESENT THE SPATIAL RESOLUTION. RTT [11] 1S A SOTA METHOD UTILIZING MULTIPLE DATA TRANSFORMATIONS

Experimental Settings

Downstream Tasks

Method
Network Input Size  Pre-trained  Single-Mod  UCF101(%) HMDBS51(%)

VCOP [6] C3D 16 % 112 UCF101 v 65.6 28.4
VCP [60] C3D 16 112 UCF101 v 68.5 325
PRP [12] C3D 16 % 112 UCF101 v 69.1 34.5
PMAS [13] C3D 16 112 K-400 v 58.8 32.6

__DbBA[42] __ CD __ 16«112  UCFIOl v/ 709 342
VID (Ours) C3D 16 112 UCF101 v 70.2 37.7
VID (Ours) C3D 16 * 112 K400 v 70.4 37.1
VCOP [6] R3D 16 % 112 UCF101 v 64.9 29.5
VCP [60] R3D 16 112 UCF101 v 66.0 31.5
ST-puzzle [41] R3D 16 % 112 K-400 v 65.8 33.7

__PRPII2] R __ 16112  UCFIOl v/ ¢ 665 297 .
VID (Ours) R3D 16 % 112 UCF101 v 73.6 38.0
VID (Ours) R3D 16 112 K400 v 73.9 384
VCOP [6] R(2+1)D 16 % 112 UCF101 v 724 30.9
VCP [60] R(2+1)D 16 112 UCF101 v 66.3 322
PRP [12] R(2+1)D 16 * 112 UCF101 v 72.1 35.0
PP [10] R(2+1)D 16 % 112 K-400 v 77.1 36.6

__ STSJ40]_ _ _R@+DD _ 16x112  UCFIOL X 778 401
VID (Ours) R(2+1)D 16 % 112 UCF101 v 78.1 40.1
VID (Ours) R(2+1)D 16 * 112 K-400 v 78.5 41.5
RTT [11] C3D 16 % 112 K-600 v 69.9 39.6
RTT [11] R3D 16 112 UCF101 v 71.3 47.5

__ RITQI) _ _Re+DD  16x112  UCFIO1 v/ 8L6 _ _ _ _ 464
MemDPC [5] R2D3D-34 40112 K-400 v 78.1 41.2
CSJ [64] R2D3D-18 16 % 112 UCF101 v 70.4 36.0
CSJ [64] R2D3D-18 16 112 K-400 v 76.2 46.7
CAVP [65] 13D 16 % 224 K-400 v 73.6 46.1
DSM [66] 13D 64 x 224 K-400 X 74.8 52.5

and DSM [66] utilizing additional trajectories and optical
flow, respectively), our proposed VID achieves competitive
performance with only RGB input. Specifically, despite uti-
lizing a much smaller input resolution and pure RGB input
only, our VID surpasses DSM [66] with a noticeable gap of
3.7% when evaluated on UCF101.

2) Video Retrieval: We further evaluate our VID on another
downstream task of nearest-neighbor video retrieval, which
evaluates the quality of features extracted by the self-
supervised pretrained model. To make a fair comparison, our
evaluation follows the protocol of previous SOTA methods

[10], [12], where all models are pretrained on UCF101. Given
ten 16-frame clips sampled from each video, their features are
extracted from the last pooling layer of the pretrained back-
bone model. During the inference stage, frames of each clip
are first resized to 128 x 171 and then centrally cropped to
112 x 112. Clips in the testing split are utilized to query the
Top k nearest samples based on their corresponding features.
Here, we consider k equal to 1, 5, 10, 20, and 50.

As shown in Table V, VID outperforms all previous spa-
tiotemporal reasoning on most evaluation metrics of UCF101
and HMDBS51 across all backbones. When evaluated on



TABLE V
PERFORMANCE OF VIDEO RETRIEVAL ON UCF101 AND HMDBS51.x: R3D HERE, REFERS TO R2D3D-18

UCF101 HMDB51

Method

Topl  TopS Topl0 Top20 Top50 Topl TopS Topl0  Top20  Top50
C3D (VCOP [6]) 12.5 29.0 39.0 50.6 66.9 74 22.6 344 48.5 70.1
C3D (VCP [60]) 17.3 31.5 42.0 52.6 67.7 7.8 23.8 353 49.3 71.6
C3D (PRP [12]) 23.2 38.1 46.0 55.7 68.4 10.5 27.2 404 56.2 75.9
C3D (PP [10]) 20.0 37.4 46.9 58.5 73.1 8.0 252 37.8 544 71.5
C3D (DBA [42]) 18.6 37.3 47.8 60.1 75.7 8.8 29.5 43.5 594 79.6
C3D (DSM [66]) 16.8 334 434 54.6 70.7 8.2 25.9 38.1 52.0 75.0
C3D (Ours) 26.9 43.6 53.6 63.8 78.2 11.6 29.6 43.3 58.4 71.3
R3D (VCOP [6]) 14.1 30.3 40.4 51.1 66.5 6.7 229 344 48.8 68.9
R3D (VCP [60]) 18.6 33.6 425 535 68.1 7.6 24.4 36.3 53.6 76.4
R3D (PRP [12]) 22.8 38.5 46.7 55.2 69.1 8.2 25.8 38.5 53.3 75.9
R3D (PP [10]) 19.9 36.2 46.1 55.6 69.8 8.2 242 37.3 53.3 74.5
R3D* (CSJ [64]) 21.5 40.5 53.4 64.9 - - - - - -
R3D* (MemDPC [5]) 202 404 52.4 64.7 - 7.7 25.7 40.6 57.7 -
R3D (Ours) 26.4 44.5 54.1 63.9 78.2 11.2 322 454 59.8 79.2
R(2+1)D (VCOP [6]) 10.7 259 35.4 473 63.9 5.7 19.5 30.7 45.8 67.0
R(2+1)D (VCP [60]) 19.9 33.7 42.0 50.5 64.4 6.7 21.5 32.7 49.2 73.3
R(2+1)D (PRP [12]) 20.3 34.0 41.9 51.7 64.2 8.2 25.3 36.2 51.0 73.0
R(2+1)D (PP [10]) 17.9 34.3 44.6 55.5 72.0 10.1 24.6 37.6 54.4 77.1
R(2+1)D (Ours) 22.0 40.4 51.2 61.8 74.7 10.4 27.9 42.7 58.1 76.7

Query

Haricut

Blow DryHair

Punching Bag Playing Tabla Punching Bag

Haircut Rafting Shaving Beard

Parallel Bars Fencing Parallel Bars

Blow DryHair

Brushing Teeth

Rowing

VID

Apply EyeMakeup Apply EyeMakeup Archery

v IEG
X}

Punching Bag Punching Bag

Parallel Bars

Parallel Bars Band Marching

Fig. 7. Visualization of video retrieval results of our VID and previous PRP [12]. The figures in the first column are queries. For each query, we present the
Top3 retrieval results of our VID and the previous SOTA PRP [12]. Action classes in red represent the correct retrieval results. Compared to PRP [12], the
network pretrained with our VID can retrieve more samples from query action categories.

UCF101 with the same backbone, our VID achieves better
performance compared to previous methods on all evalua-
tion metrics. Specifically, VID surpasses the previous SOTA
method PRP [12] by at least 1.7% for Topl accuracy on
UCF101, while the improvement further increases to 3.7%
when both methods adopt C3D as their backbones. More
specifically, VID surpasses one of the previous SOTA meth-
ods PRP [12] by at least 1.7% for Topl accuracy on UCF101,
while the improvement further increases to 3.7% when
both methods adopting C3D as their backbones. Particularly,
although the performance of VID on Top20 is outperformed by
CSJ [64] with a gap of 1.0% when adopting C3D, our VID still
surpasses CSJ across all other evaluation matrices on UCF101.
When tested on HMDBS51, the proposed VID similarly exceeds

previous methods on most evaluation metrics. Compared to
PRP [12] and PP [10], our method achieves better performance
with a margin of 0.3%-3.6% for Topl accuracy across three
different backbones. The performance of improvement fur-
ther expands to more than 2.4% when k varies from 5 to
20. It is worth noting that though our VID is surpassed by
DBA [42] on the Top 10-50 matrices of HMDBS51 with
C3D, the performance gap is relatively trivial compared to our
improvement on the Top1 and the Top5. Furthermore, our VID
achieves superior performance with noticeable improvement
across all evaluation matrices on UCF101. The noticeable
overall improvement further justifies that our VID extracts
more effective spatiotemporal representation for downstream
tasks compared to previous methods.
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We further present multiple examples of video retrieval
results in comparison to the previous SOTA method PRP [12]
as a qualitative study. Both our VID and PRP [12] are
evaluated with R3D-18. Illustrated in Fig. 7, our proposed
VID provide more reasonable results compared to previous
PRP [12]. For example, given the query of applying eye
makeup as shown in the first row, our VID retrieves two sam-
ples of the same action classes as the query among Top3, while
PRP retrieves samples that belong to similar-yet-incorrect
actions, such as haircut and blow-dry hair. The retrieval results
indicate that the network pretrained with our VID obtains
a more comprehensive understanding of videos compared to
previous methods.

V. CONCLUSION AND FUTURE WORKS

In this article, we propose a novel self-supervised method
based on VID for video representation learning. The incoher-
ent clip is generated as the concatenation of subclips sampled
from the same video with incoherence between each other.
By detecting the location and length of incoherence, the
network can extract effective spatiotemporal features. The ICL
is developed to maximize the mutual information between
subclips from the same raw video. Extensive experiments
show that VID achieves SOTA performance with significant
margins compared to previous methods. The proposed VID
reveals a new perspective to leverage video coherence for
video representation learning.

Despite the improvement of VID compared to previous
methods, there is still room for further improvement. While
this article proposes to generate each incoherent clip with two
subclips, it is possible to further elaborate this method by using
more subclips. Since VID is delicately designed to avoid loop-
back sampling, the number of input frames is restricted by the
minimum frames of samples in the dataset as well as the inco-
herence length. One of the main challenges is that the lower
bound of the raw frame number that satisfies our requirements
is increasing when we introduce more subclips. In the future,
the performance of VID can be further advanced by introduc-
ing more flexible frame sampling methods or using datasets
with more raw video frames.
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