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Abstract. Lidar-based 3D object detection has been widely adopted
for autonomous vehicles. However, adverse weather conditions, such as
rain, pose significant challenges by reducing both detection distance and
accuracy. Intuitively, one could adopt upsampling to improve detection
accuracy. Nevertheless, the task of increasing the number of target points,
especially the key detection points crucial for object detection, remains
an open issue. In this paper, we explore how an additional data upsam-
pling pre-processing stage to increase the density of the point cloud can
potentially benefit deep-learning object detection. Unlike the state-of-
the-art upsampling approaches which aim to improve point cloud ap-
pearance and uniformity, we are interested in optimizing the object de-
tection task. The object of interest, rather than full scenarios or small
patches, is used to train the network - we call it object-aware learning.
Additionally, data collection and labelling are time-consuming and ex-
pensive, especially for rain scenarios. To tackle this challenge, we propose
a semi-supervised upsampling network that can be trained using a rel-
atively small number of labelled simulated objects. Lastly, we verify a
well-established sensor/rain simulator further, using a publicly available
database. The experimental results on a database generated by this sim-
ulator are promising and have shown that our object-aware networks can
extend the detection range in rainy scenarios by several meters and can
achieve improvements in Bird-eye-View Intersection-over-Union (BEV
IoU) detection accuracy.

Keywords: object detection · point cloud upsampling · generative ad-
versarial network · object-aware learning · semi-supervised learning.

1 Introduction

LiDAR object detection in adverse weather conditions poses a significant chal-
lenge in autonomous vehicle research and remains an open issue. Given an un-
ordered sparse point cloud received by LiDAR in the rain, one could explore point
⋆ Supported by A*STAR
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cloud upsampling to achieve a denser point cloud in order to improve the detec-
tion of different targets. Traditionally, upsampling methods have primarily been
employed to support tasks like object classification [3] and surface smoothness
reconstruction [4]. For upsampling experiments, the different patches of the sam-
ples present in the training dataset are selected for training and down-sampled
using methods such as Poisson disk sampling. Subsequently, during the training
phase, the network is tasked with upsampling the point cloud and comparing it
with the ground truth to evaluate its performance. Traditional approaches for
LiDAR point clouds typically employ the farthest point sampling (FPS) method
to select seed points, followed by the application of the K-nearest neighbours
(KNN) algorithm to acquire input patches. These patches are then merged af-
ter the upsampling process. While this approach presents good results for many
applications, it has lower performance in scenarios involving adverse weather
driving due to the extreme sparsity of data and the lack of emphasis on the
downsampling pattern observed in natural settings.

Reconstructing complex geometry or topology from a sparse point cloud is
still an open problem. Recently there has been some work done on optimizing
object detection improving the resolution from low-resolution LiDAR (32 Ch)
to high-resolution LiDAR (64 Ch), using 2D interpolation methods [6]. Their
work demonstrated improved mAP (mean Average Precision) for different ob-
jects provided by the publicly available Kitti dataset [7]. However, their method
is not adequate for rainy scenarios, where LiDARs can only receive point clouds
with high sparsity. We aim to enhance and detect objects rather than obtain
high-density point clouds. Building upon this motivation, we propose a novel
object-aware upsampling approach, trained using the object of interest instead
of small patches, to extend the detection range. The main contributions include:

– We propose a few object-aware upsampling strategies (an angle-invariant ap-
proach, a semi-supervised approach and an object-aware-traditional-patch-
based combined approach) to increase the LiDAR detection range and to
overcome the difficulty of collecting labelled data.

– We verify a well-established simulator and generate a rain database, which
we can adopt as a benchmark for object detection in the rain.

The paper is organized as follows. In Section 2, we present the rain model used
for our experiments. Section 3 provides an overview of existing upsampling tech-
nologies. In Section 4, we introduce our novel rain object-aware approach. The
experimental results and concluding remarks are presented in Section 5.

2 Sensor and rain models, verification and simulated
database

Prior to conducting experiments on actual rain data, simulations can be em-
ployed to efficiently verify our methods. For this purpose, we will utilize a state-
of-the-art simulator [8] in our experiments. This simulator offers both the phys-
ical sensor model and the rain model. However, it should be noted that the
simulator does not account for the noise introduced by rain.
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The theoretical model used in this simulator regarding the impact of rain
on LiDAR measurements can be found in [9]. The power received by a LIDAR
sensor [10] (reflected intensity) is,

Pr(z) = El ∗
c ∗ ρ(z) ∗Ar

2 ∗R2
∗ τT ∗ τR ∗ exp((−2) ∗

∫ z

0

α(z
′
) dz

′
) (1)

where El is the laser pulse energy, c is the speed of light, ρ(z) is the back-
scattering coefficient of a target, α(z

′
) is the scattering coefficient of rain along

the path to a target, Ar is the effective receiver area, τT and τR are the trans-
mitter and the receiver efficiencies. Without loss of generality, assuming a homo-
geneous environment, the constant coefficient Cs = c∗El ∗Ar ∗τT ∗τR represents
the particular characteristics of the sensor, and can be ignored when calculating
the relative sensor power, which is,

Pn(z) =
ρ

z2
∗ e(−2)∗α∗z (2)

Under clear weather conditions, corresponding to α=0.0, at the maximum
detection range of a LiDAR (zmax), the maximum detectable power for a high
reflectivity object (ρ=0.9/π) will be,

Pmin
n =

0.9

π ∗ z2max

(3)

To calculate the relative sensor power measured under rainy conditions, the
scattering coefficient, α, can be defined according to the power law [11],

α = a ∗Rb (4)

where R is the rainfall rate (mm/h), and a and b are empirical coefficients. The
authors obtain the values a=0.01 and b=0.6 using the measurements of another
paper [12]. Therefore the final model for the relative intensity returned by the
LiDAR as a function of rainfall rate is:

Pn(z) =
ρ

z2
∗ e(−0.02)∗R0.6∗z (5)

The last equation is used to simulate rain in terms of rain rate. The points with
a power/intensity less than the value defined by (3) will be eliminated.

3 Point Cloud Upsampling for Object Detection

Several upsampling approaches have been proposed in the literature, such as
those mentioned in [3] and [14]. However, these methods have not been specifi-
cally evaluated or tested in the context of enhancing point clouds for rainy scenes
to improve object detection performance. To the best of our knowledge, we are
the first to explore upsampling methods to improve detection in rain.
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The first algorithm explored in our experiments is the Multi-step Point cloud
Upsampling network (MPU) [14]. The MPU network offers a notable advantage
through its feature extraction unit, which employs K-nearest neighbours (KNN)
search based on feature similarity to transform inputs into a fixed number of fea-
tures. These features are further refined through a densely connected multilayer
perceptron (MLP) chain. Furthermore, MPU’s multi-step progressive upsam-
pling and dynamic graph convolution capabilities make it particularly suitable
for our research objectives, leading us to adopt it in our work.

Given the increasing interest in generative adversarial networks (GANs) and
their remarkable success in image generation tasks, we further investigate the
PU-GAN algorithm [3]. PU-GAN offers a distinct advantage over MPU in terms
of its ability to generate uniform point clouds. This improved performance is
attributed to the utilization of uniform loss and adversarial loss mechanisms
within its framework. Considering these strengths, we include PU-GAN as the
second algorithm explored in this paper.

4 Rain object-aware upsampling

Building upon the insights provided in the previous section, it has been es-
tablished that traditional upsampling approaches primarily emphasize patches
and treat individual points equally, overlooking the specific objects of interest.
To enhance the accuracy of object detection, this study proposes a novel rain
object-aware upsampling technique that extends the capabilities of patch-based
approaches. This approach leverages the objects of interest to guide the upsam-
pling process, thereby improving the overall effectiveness of object detection.

Fig. 1. Upsampling methodology

In this paper, we leverage the up-and-down sampling structure and adver-
sarial training strategy of PuGAN to facilitate our research. Specifically, we
implement PuGAN in Pytorch [19], which has been verified in [20]. As shown in
Figure: 1, our upsampling network learns weights from some rain and non-rain
data. The training data was generated as follows:
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– Samples were recorded using the MSU Autonomous Vehicle Simulator (MAVS)
[8] simulator on a clear day by placing the target at some distances and an-
gles, e.g. 7 meters and 90 degrees in Fig. 1, which served as ground truth.
Each sample in the ground truth training data contains the same number of
points, e.g. 4096 points in this work.

– An angle-invariant upsampling approach was used: The network was trained
using measurements of the car positioned at different angles, e.g. 400 samples
are used in our experiments, which are generated with angle values from 0
to 90 degrees in intervals of 10 degrees.

Without loss of generality, an upsampling ratio of 4 is applied in our ex-
periments. The angle-invariant approach has been trained for 19 epochs (with
two different settings: 1. unsupervised trained using only non-rain object sam-
ples, 2. semi-supervised using 90% non-rain samples and 10% rain samples). In
the final pre-processing experiment, we merged the points obtained from the
semi-supervised approach with the pre-trained MPU upsampled points.

4.1 Rain object-aware framework

The first stage of our rain object-aware framework involves enhancing the point
cloud by upsampling it to restore and augment 3D object features. Taking in-
spiration from Wu et al. [16], we employ a density-based spatial clustering with
noise (DBSCAN) method for vehicle clustering. As presented in their approach,
a recommended value for ϵ is 1.1 meters, as prior research has demonstrated
that the average headway of vehicles in saturated flow conditions at signalized
intersections is 2.18 meters [17].

After identifying the car cluster, the target point cloud is passed through the
pre-trained MPU to assess its initial performance. For performance comparison
with traditional methods, we employ the MPU (implemented in Tensorflow as
described in [18]) pre-trained using the Sketchfab dataset. Without loss of gen-
erality, we can set the minimum number of points to 33, an up ratio of 16, a step
ratio of 3, and a patch num ratio of 400.

In the second stage of our framework, we employ object detection on the
enhanced point cloud data. To evaluate the effectiveness of our upsampling ap-
proach, we measure the object detection performance using the state-of-the-art
network, CenterPoint [15] (utilizing the Second backbone [21] and voxel size of
0.1). We choose CenterPoint for its simplicity, high speed, and good accuracy.

5 Experimental Results

5.1 Simulation setting and analysis

To validate the effectiveness of the simulator adopted in this work, we conducted
experiments using a publicly available database. Firstly, we focused on verifying
the rain model using NuScenes [13]. In their paper [9], Goodin et al. validated
the rain model by measuring the maximum detection range based on the rain
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rate and object reflectivity. To assess the capabilities of our rain model, we repro-
duced these experiments and compared our results with the real-world findings
presented by the BMW Research group in [22]. The experimental results, shown
in Figure 2, illustrate the distance to the farthest point in a random NuScenes
scene after applying the model (Equation (5)). We assumed uniform reflectivity
for all points, employing the same values as [22]: 0.2 for the red line and 0.07 for
the blue line.

Fig. 2. Max Range vs Rain Rate for 1. Goodin et al simulation, 2. Our reproduction
on NuScenes, 3. Real Results from BMW Research Lab

As Figure: 2, the validity of the model matches with the real experiments,
motivating us to use the MAVS [8] simulator for this paper.

Fig. 3. Simulation setting

To assess the effectiveness of our upsampling method in enhancing LiDAR
object detection performance, we generated a new database using the MAVS sim-
ulator. The MAVS simulator is developed with an MPI-based framework that
enables parallel process coupling, along with a physics-based sensor simulator
for LIDAR, GPS, cameras, and radars [8]. In this study, we utilized a Velodyne
HDL-32E sensor positioned 1.84 meters above the host vehicle (AV) to gener-
ate simulation data. This LiDAR position was selected to match the recording
configuration of the NuScenes dataset. The data recording process is depicted
in Figure 3.
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– A simulated car is placed in front of the AV’s LiDAR at 10 meters with an
orientation of 0 degrees (parallel to the direction of the host vehicle)

– We incrementally placed the car 1 meter away from the AV until it became
undetectable. This iterative process was repeated for various angles of the
car, ranging from 0 to 90 degrees (perpendicular to the AV), with an interval
of 10 degrees. Additionally, we varied the rain rate from 30 mm/s to 70 mm/s
during these experiments.

A total of 5,170 scenarios have been recorded (with nine samples for each). The
hierarchy of this dataset is a series of subtrees which represent the data from
different rain rates, angles and distances.

We evaluated the impact of rain on the above-mentioned dataset using the
CenterPoint detector. The detector was applied to predict bounding box (bbox)
scores and coordinates. For each sample scenario, we considered a minimum
distance of 5 meters below the maximum detectable range, focusing specifically
on challenging cases where detection confidence and accuracy are significantly
reduced. The threshold for the bbox confidence score was set to 0.28, which is
in close proximity to the commonly chosen value of 0.3 [23].

5.2 Semi/UnSupervised learning for Angle-invariant upsampling
analysis

In the subsequent stage of our experiments, we aimed to determine the impact
of different training approaches on detection performance. Specifically, we in-
vestigated whether employing a semi-supervised approach with a combination
of rain non-rain pair training samples and non-rain training samples, or an un-
supervised approach using only non-rain training samples, would influence the
detection performance.

Through our experimental findings, we have observed that non-rain training
samples provide advantages for smaller angles, while rain-non-rain pair training
samples provide the greatest benefits for larger angles. As illustrated in Figure
4, the semi-supervised object-aware approach offers substantial benefits for both
small angles (e.g., 0 degrees) and large angles (e.g., 80 degrees).

5.3 Best distance improvements

Moreover, we visually depicted the enhancement of the detection range for three
different methods: (1) PuGAN semi-supervised object-aware method combined
with MPU points, (2) Traditional state-of-the-art patch-based approach (MPU),
and (3) PuGAN semi-supervised object-aware method. The visualization, pre-
sented in Figure 5, showcases the improvements achieved for two angles, namely 0
degrees and 80 degrees. The results illustrate the promising performance of com-
bining points from different upsampling methods (object-aware and patch-based)
in improving detection confidence in certain cases, while the semi-supervised
method displays better improvements in other cases. Notably, both methods
outperform traditional approaches in terms of performance.
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Fig. 4. Maximum detection distance vs rain rate for the target placed at an orientation
of 0 and 80 degrees for a. Unsupervised PuGAN object-aware method trained only with
non-rain samples, b. Semisupervised PuGAN object-aware method trained with both
rain non-rain pairs and non-rain samples

Fig. 5. Maximum detection distance vs rain rate for the target placed at an orientation
of 0 and 80 degrees for: PuGAN semi-supervised object-aware method combined with
MPU points (green line); Traditional state-of-the-art patch-based approach (MPU)
(blue line) and PuGAN semi-supervised object-aware method (red line)

Lastly, it is also relevant to note that the PuGAN Angle-invariant method
achieved a speed of 18 FPS using NVIDIA Corporation GM200 [GeForce GTX
TITAN X], further bolstering the relevance of these methods. The speed im-
provement can be attributed to the exclusion of multiple patches, which would
otherwise result in a substantial increase in computational power requirements.

5.4 Bird-Eye-View IoU

The evaluation of our method’s improvements includes the use of the BEV IoU
metric. Our methods can achieve good improvements in various scenarios, partic-
ularly in situations with extreme sparsity. Table 1 highlights the most significant
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Table 1. Highest Improvement of BEV IoU for different angles, rain rates and distances

Rain Dist. Ang. Max 2D IoU Up Max 2D IoU Impr.
10 32 90° 72.1% 88.3% 16.2%
15 31 70° 14.5% 65.3% 50.7%
20 24 90° 26.5% 89.2% 62.7%
25 25 80° 0% 85.6% 85.6%
34 25 70° 3.3% 69.0% 65.7%
35 24 70° 7.6% 60.4% 52.8%
37 25 60° 0% 66.7% 66.7%
39 21 70° 28.5% 81.2% 52.7%
41 20 80° 27.4% 88.1% 60.7%
42 21 80° 26.7% 87.6% 61.0%
45 23 0° 0% 60.8% 60.8%
50 23 20° 0% 89.2% 89.2%
53 22 0° 0% 69.8% 69.8%
62 19 60° 29.6% 83.6% 54.0%
70 19 0° 23.9% 78.6% 54.7%

Average Improvement 60.2%

improvements in IoU concerning rain rate, achieved through the combination of
the PuGAN semi-supervised angle invariant object-aware method and the MPU
points method. These improvements can be attributed to the inherent capability
of our approach to enhance crucial object features that are essential for existing
object detection methods.

Table 1 illustrates the upsampling improvements across various rain rates.
In several instances, the CenterPoint model failed to detect the car before up-
sampling, resulting in an IoU value of 0. However, following the application of
upsampling techniques, the network successfully detected the car with an accu-
racy ranging from 60% to 89%.

5.5 Experiment on Real Data

Finally, we conducted experiments on the Kitti dataset [7] to further evaluate the
benefits of upsampling for object detection. In Figure 6, we present an example
of the detection results obtained using the 3D-SSD detector [24] on a randomly
selected scene. Initially, the original detection (with a bbox threshold score of 0.6)
failed to detect certain cars. However, by individually selecting and upsampling
the non-detected cars using the semi-supervised method, successful detection
was achieved. This result emphasizes the significance of upsampling in enhancing
detection confidence, particularly for objects situated at long distances. In our
experiments, the cars were positioned at distances of 38, 43, and 45 meters,
respectively.

Despite the promising nature of the findings, we acknowledge that there are
anticipated limitations in our method. Expected and current limitations encom-
pass the following aspects: potential instability in performance, leading to a
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degradation in object detection confidence or accuracy when employed with var-
ious object detectors across diverse scenarios, necessitating further fine-tuning
(e.g. For experiments conducted on Kitti, there is a minimal-to-none improve-
ment in the average precision metric using the semi-supervised learning method);
lack of generalizability, for example, domain knowledge or a segmentation algo-
rithm are required to select the targets of interest. These limitations primarily
stem from the ongoing research challenge of point cloud upsampling, as well as
the fact that existing approaches have not been specifically designed to address
object detection in adverse weather conditions. Specifically, the reconstruction
of a target’s shape and the utilization of LiDAR measurements for learning
purposes prove challenging due to the inherent sparsity of the data. Moreover,
introducing an excessive number of points or misplacing points during the up-
sampling process can adversely affect the detection performance. To overcome
these challenges, it is imperative to devise a more robust upsampling algorithm
that takes into account the unique difficulties associated with upsampling sparse
LiDAR point clouds.

Fig. 6. Experiment on Real Kitti Data

6 Conclusion

Lidar object detection range as well as accuracy will be reduced significantly in
rain. In this paper, we explore an object-aware upsampling method to increase
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the LiDAR object detection range and accuracy in the rain. Different from the
existing upsampling approach, which increases the density of different patches
equally, we aim to detect an object. We verified a well-established simulator and
the experiments on a database generated by this simulator have shown that our
object-aware networks can extend the detection range from traditional patch-
based upsampling approaches by several meters in rain conditions. In addition,
it can improve object detection accuracy in terms of BEV IoU.

Although some preliminary results obtained by applying our novel approach
presented in this study are very encouraging, more experiments and optimization
are needed to make it a stable solution to perception in rain. Currently, limited
experimentation has been conducted to ascertain the characteristics including
the conditions under which the approach is effective or unsuccessful, as well as
the accuracy limitations associated with it.

A benchmark database could be built based on more simulation data in the
near future. Furthermore, experiments on real rain data, collected using our
autonomous vehicle, will allow us to evaluate our methods under challenging ad-
verse weather conditions. Finally, We could extend our work to improve robust-
ness and adaptability across various targets, angles, and sparsity characteristics
in future.
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