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Abstract—We study the problem of recovering an s-sparse

signal x

? 2 Cn
from corrupted measurements y = Ax

?
+z

?
+w,

where z

? 2 Cm
is a k-sparse corruption vector whose nonzero

entries may be arbitrarily large and w 2 Cm
is a dense noise

with bounded energy. The aim is to exactly and stably recover

the sparse signal with tractable optimization programs. In this

paper, we prove the uniform recovery guarantee of this problem

for two classes of structured sensing matrices. The first class

can be expressed as the product of a unit-norm tight frame

(UTF), a random diagonal matrix and a bounded column-

wise orthonormal matrix (e.g., partial random circulant matrix).

When the UTF is bounded (i.e. µ(U) ⇠ 1/
p
m), we prove that

with high probability, one can recover an s-sparse signal exactly

and stably by l1 minimization programs even if the measurements

are corrupted by a sparse vector, provided m = O(s log2 s log2 n)
and the sparsity level k of the corruption is a constant fraction

of the total number of measurements. The second class considers

randomly sub-sampled orthonormal matrix (e.g., random Fourier

matrix). We prove the uniform recovery guarantee provided that

the corruption is sparse on certain sparsifying domain. Numerous

simulation results are also presented to verify and complement

the theoretical results.

Index Terms—Compressed sensing, corruption, dense noise,

unit-norm tight frames.

I. INTRODUCTION

The theory of compressed sensing has been widely stud-
ied and applied in various promising applications over the
recent years [1]–[5]. It provides an efficient way to recover a
sparse signal from a relatively small number of measurements.
Specifically, an s-sparse signal x? is measured through

y = Ax?
+w, (1)

where A 2 Cm⇥n is referred to as the sensing matrix,
y 2 Cm is the measurement vector and w 2 Cm represents
the noise vector with the noise level kwk

2

 ". It has been
shown that if A satisfies the restricted isometry property (RIP)
and " is small, the recovered signal ˆx obtained by l

1

norm
minimization is close to the true x?, i.e. kˆx�x?k  C" with
C being a small numerical constant. Many types of sensing
matrices have been proven to satisfy the RIP condition. For
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example, random Gaussian/Bernoulli matrices satisfy the RIP
with high probability if m � O(s log(n/s)) [1], [3], whereas
structured sensing matrices consisting of either randomly
subsampled orthonormal matrix [6] or modulated unit-norm
tight frames [7] have the RIP with high probability when m
is about O(s log4 n)1.

This standard compressed sensing problem has been gener-
alized to cope with the recovery of sparse signals when some
unknown entries of the measurement vector y are severely
corrupted. Mathematically, we have

y = Ax?
+ z? +w, (2)

where z? 2 Cm is an unknown sparse vector. To reconstruct
x? from the measurement vector y, the following penalized
l
1

norm minimization has been proposed:

min

x,z
kxk

1

+ �kzk
1

s.t. ky � (Ax+ z)k
2

 ". (3)

In [10], it was shown that random Gaussian matrices can
provide uniform recovery guarantees to this problem (3). In
other words, a single random draw of a Gaussian matrix A is
able to stably recover all s-sparse signals x? and all k-sparse
corruptions z? simultaneously with high probability. On the
other hand, for structured sensing matrices, the nonuniform
recovery guarantees2 can be proved for randomly subsampled
orthonormal matrix [11] and its generalized model - bounded
orthonormal systems3 [10]. Very recently, the uniform recov-
ery guarantee for bounded orthonormal systems is shown in
[13].

In this paper, we prove the uniform recovery guarantee for
two different corrupted sensing models. In the first model, the
measurement matrix is based on randomly modulated unit-
norm frames [7] and the corruption is sparse on the identity
basis. It is noted that the measurement matrix in the first model
does not consist of a random subsampling operator, e.g., the
partial random circulant matrix [14]. For the second model,
we consider

y = Ax?
+Hz? +w, (4)

where A represents a randomly subsampled orthonormal ma-
trix, and the corruption Hz? is assumed to be sparse on

1Recent works [8] [9] for subsampled Fourier matrices show that the factor
log

4 n can be reduced to log

3 n.
2A nonuniform recovery result only states that a fixed pair of sparse signal

and sparse corruption can be recovered with high probability using a random
draw of the matrix. Sometimes, the signs of the non-zero coefficients of the
sparse vector (and corruption) can be chosen at random to further simplify
arguments. Uniform recovery is stronger than nonuniform recovery. (see [5,
Chapter 9.2] [6, Section 3.1] for more details.)

3See [12] for the construction of the generalized model.
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certain bounded domain (e.g., a discrete Fourier transform
(DFT) matrix). Our results imply that many structured sensing
matrices can be employed in the corrupted sensing model
to ensure the exact and stable recovery of both x? and z?,
even when the sparsity of the corruption is up to a constant
fraction of the total number of measurements. Thanks to
the uniform recovery guarantee, our results can address the
adversarial setting, which means that exact and stable recovery
is still guaranteed even when x?, z? and w are selected
given knowledge of the sensing matrix A. In addition, our
analysis results are also applicable to demonstrate the recovery
guarantee when the corrupted sensing problem is solved via
nonconvex optimization.

A. Potential Applications

The problem of recovering sparse signal x? and sparse
corruption z? from the measurement vector y arise from many
applications, where the compressed measurements may be
corrupted by impulse noise.

For example, in a sensor network, each sensor node mea-
sures the same signal x? independently before sending the
outcome to the center hub for analysis. In this setting, each
sensor makes the measurement hai,x?i, and the resultant
measurement vector is Ax? by arranging each ai as the rows
of A [11], [15]. However, in practice, some sensor readings
can be anomalous from the rest. These outliers could be caused
by individually malfunctioned sensors, or due to some unusual
phenomena or event happening in certain areas of the network
[16] [17]. This anomaly effect can be modeled by a sparse
vector z?. Mathematically, we have y = Ax?

+ z? + w,
where z? represents the outlier regions and w stands for
possible small noise in the data transmission. Our results make
it possible to recover both the underlying signal and detect the
outlier regions simultaneously, which could be very useful for
network monitoring.

Another application of sparse signal recovery from sparsely
corrupted measurements is error correction in joint source-
channel coding. In [11], [18], [19], compressed sensing has
been exploited as a joint source-channel coding strategy for
its efficient encoding and robust error correcting performance.
For a signal f that is sparse in the domain  , i.e., f =  x?,
it can be encoded by a linear projection y = �f = Ax?

with A = � . Existing works have investigated the situations
where the encoded signal y is sent through either an erasure
channel [18] or a gross error channel [11], [19]. Our results
can not only be applied in these scenarios, but also provide
a new design on the encoding matrix with uniform recovery
guarantee.

In some scenarios, the measurement noise may be sparse or
compressible in some sparsifying basis. One example is the
recovery of video or audio signal that are corrupted by narrow-
band interference (NBI) due to improper designed equipment
[20], [21]. Electric hum as a typical impairment is sparse
in the Fourier basis. Another example is the application of
compressed sensing to reduce the number of samples in convo-
lution systems with deterministic sequences (e.g., m-sequence,
Golay sequence). Such convolution systems are widely used in

communications, ultrasound and radar [22], [23]. In practice,
the measurements may be affected by frequency domain
interference or multi-tone jamming [24]. For instance, in CS-
based OFDM channel estimation [25]–[28], suppose x is the
channel response and that the pilot sequence g is constructed
from Golay sequences, the time-domain received signal can be
represented as [28], y =

p
n
mR

⌦

0F⇤diag(g)Fx + w, where
R

⌦

0 is a random subsampling operator and F denotes the
DFT matrix. The recovery performance can be guaranteed
by noticing that the sensing model is a subsampled version
of the orthonormal matrix F⇤diag(g)F. However, in OFDM-
based powerline communications, the NBI due to intended
or unintended narrow-band signals can severely contaminate
the transmitted OFDM signal. The time-domain NBI vector is
sparse in the Fourier basis [29], [30]. Our results cover these
settings, and therefore, provide a CS-based method to jointly
estimate the signal of interest and the NBI.

B. Notations and Organization of the paper

For an n-element vector a, we denote by ai, (i 2 [n] =
{0, ..., n� 1}), the i-th element of this vector. We represent a
sequence of vectors by a

0

, ...,an�1

and a column vector with
q ones by 1q . The sparsity of a vector can be measured by its
best s-term approximation error,

�s(a)p = inf

k˜ak0s
ka� ˜akp,

where k · kp is the standard lp norm on vectors. For a
matrix A, Ajk denotes the element on its j-th row and k-
th column. The vector obtained by taking the j-th row (k-th
column) of A is represented by A

(j,:) (A
(:,k)). We denote by

A
0

, ...,An�1

a sequence of matrices. A�1 and A⇤ represent
the inverse and the conjugate transpose of A. The Frobenius
norm and the operator norm of matrix A are denoted by
kAkF =

p
tr(A⇤A) and kAk

2!2

= supkxk2=1

kAxk
2

respectively. We write A . B if there is an absolute constant
c such that A  cB. We denote A ⇠ B if c

1

A  B  c
2

A
for absolute constants c

1

and c
2

.
The coherence µ(A) of an ñ ⇥ n matrix A describes the

maximum magnitude of the elements of A, i.e., µ(A) =

max

1jñ
1kn

|Ajk|. For a unitary matrix  2 Cn⇥n, we have
1p
n
 µ( )  1.

The rest of the paper is organized as follows. We start by
reviewing some key notions and results in compressed sensing
in Section II. In Section III, we prove the uniform recovery
guarantee for two classes of structured random matrices. In
Section IV, we conduct a series of simulations to reinforce
our theoretical results. Conclusion is given in Section V. We
defer most of the proofs to the Appendices.

II. PRELIMINARIES

A. RIP and structured sensing matrices

The restricted isometry property (RIP) is a sufficient condi-
tion that guarantees uniform and stable recovery of all s-sparse
vectors via nonlinear optimization (e.g. l

1

-minimization). For a



3

matrix A 2 Cm⇥n and s < n, the restricted isometry constant
�s is defined as the smallest number such that

(1� �s)kxk2
2

 kAxk2
2

 (1 + �s)kxk2
2

,

holds for all s-sparse vectors x. Alternatively, the restricted
isometry constant of A can be written as

�s = sup

x2Ds,n

��kAxk2
2

� kxk2
2

�� , (5)

where Ds,n = {x 2 Cn
: kxk

2

 1, kxk
0

 s}.
Among the many structured sensing matrices that satisfy the

RIP, two classes have been found to be applicable in various
scenarios. One is the randomly subsampled orthonormal sys-
tems [6], which encompass structured sensing matrices like
partial random Fourier [2], convolutional CS [28], [31] and
spread spectrum [32]. The other is the UDB framework which
consists of a unit-norm tight frame (UTF), a random diagonal
matrix and a bounded column-wise orthonormal matrix [7].
Popular sensing matrices under this framework include partial
random circulant matrices [14], random demodulation [33],
random probing [34] and compressive multiplexing [35].

B. Recovery Condition

We review the definition of generalized RIP, which is
useful to establish robustness and stability of the optimization
algorithm.

Definition II.1. [10, Definition 2.1] For any matrix ⇥ 2
Cr⇥(n+m), it has the (s, k)-RIP with constant �s,k if �s,k is
the smallest value of � such that

(1� �)(kxk2
2

+ kzk2
2

) 
����⇥


x
z

�����
2

2

 (1 + �)(kxk2
2

+ kzk2
2

)

(6)

holds for any x 2 Cn with kxk
0

 s and any z 2 Cm with
kzk

0

 k.

Here, the generalized RIP is termed as the (s, k)-RIP for
convenience. We note that the (s, k)-RIP is more stringent
than the conventional RIP. In other words, the fact that a
sensing matrix A satisfies the RIP does not mean that the
associated matrix ⇥ = [A, I] would satisfy the (s, k)-RIP.
The recovery performance of the penalized optimization (3)
can be guaranteed by the following result.

Theorem II.2. [13, Theorem 3.7] Suppose y = Ax?
+z?+w

and ⇥ = [A, I] 2 Cm⇥(n+m) has the (2s, 2k)-RIP constant
�
2s,2k satisfying

�
2s,2k <

1r
1 +

⇣
1

2

p
2

+

p
⌘
⌘
2

with ⌘ =

s+�2k
min{s,�2k} . Then for x? 2 Cn, z? 2 Cm, and

w 2 Cm with kwk
2

 ", the solution (

ˆx, ˆz) to the penalized

optimization problem (3) satisfies

kˆx� x?k
1

+ kˆz� z?k
1

 c
1

(�s(x)1 + ��k(z))

+ c
2

p
s+ �2k"

kˆx� x?k
2

+ kˆz� z?k
2

 c
3

⇣
1 + ⌘1/4

⌘✓
�s(x)1p

s
+

�k(z)1p
k

◆

+ c
4

⇣
1 + ⌘1/4

⌘
",

where the constants c
1

, c
2

, c
3

, c
4

depend on �
2s,2k only.

We note that similar theorem has been proven in [10] when
both the signal and corruption are vectors with exact sparsity.
The above result not only relaxes the requirement on the
(2s, 2k)-RIP constant, but also guarantees stable recovery of
inexactly sparse signals and corruptions. Therefore, for either
sparse or compressible signals and corruptions, the key to
establish the recovery guarantee for a sensing matrix is to
prove the (s, k)-RIP.

III. MAIN RESULTS

In this section, we prove the (s, k)-RIP for two classes of
structured sensing matrices. This result can then be combined
with Theorem II.2 to prove the recovery guarantee. In addition,
the extension to the recovery via nonconvex optimization is
presented. Last but not least, we compare the main theorems
to existing literature where relevant.

A. Randomly modulated unit-norm tight frames

We prove the uniform recovery guarantees for the class
of structured sensing matrices that can be written as A =

UDeB, where U 2 Cm⇥ñ is a UTF with µ(U) ⇠ 1/
p
m,

D = diag(⇠) is a diagonal matrix with ⇠ being a length-
ñ random vector with independent, zero-mean, unit-variance,
and L-subgaussian entries, and eB 2 Cñ⇥n, ñ � n, represents
a column-wise orthonormal matrix, i.e. eB⇤ eB = I.

The following result presents a bound on the required num-
ber of measurements m such that the corresponding matrix
⇥ has the (s, k)-RIP constant satisfying �s,k  � for any
� 2 (0, 1).

Theorem III.1. Suppose y = Ax?
+ z? + w with ⇥ =

[A, I] 2 Cm⇥(n+m), A = UDeB and µ(U) ⇠ 1/
p
m. If,

for � 2 (0, 1),

m � c
5

��2sñµ2

(

eB) log

2 s log2 ñ,

m � c
6

��2k log2 k log2 ñ,

where c
5

and c
6

are some absolute constants, then with
probability at least 1� 2ñ� log

2 s log ñ, the (s, k)-RIP constant
of ⇥ satisfies �s,k  �.

Proof. The (s, k)-RIP constant �s,k can be equivalently ex-
pressed as

�s,k = sup

(x,z)2T

�����

����⇥

x
z

�����
2

2

� kxk2
2

� kzk2
2

����� , (7)
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where T := {(x, z) : kxk2
2

+ kzk2
2

= 1, kxk
0

 s, kzk
0


k,x 2 Cn, z 2 Cm}. With ⇥ = [A, I], the RIP-constant can
be further reduced to

�s,k = sup

(x,z)2T

��kAxk2
2

+ kzk2
2

+ 2hAx, zi � kxk2
2

� kzk2
2

��

 sup

(x,z)2T

��kAxk2
2

� kxk2
2

��

| {z }
�1

+2 sup

(x,z)2T
|hAx, zi|

| {z }
�2

(8)

Our aim is to derive bounds on the number of measurements
m such that for any � 2 (0, 1) the RIP-constant �s,k is upper
bounded by �. We have

�
1

 sup

x2Ds,n

��kAxk2
2

� kxk2
2

�� (9)

with sup

x2Ds,n

��kAxk2
2

� kxk2
2

�� being the restricted isometry
constant in the standard RIP definition (5). Then, by [7,
Theorem III.2], we reach the following result.

Suppose, for any � 2 (0, 1),

m � 4c
1

��2sñµ2

(

eB)(log

2 s log2 ñ),

then �
1

 �/2 holds with probability at least 1 �
ñ�(log ñ)(log s)2 .

Therefore, proof of the (s, k)-RIP is reduced to bounding
the inner product term �

2

.

�
2

= 2 sup

(x,z)2T
|hUDeBx, zi| = 2 sup

(x,z)2T
|z⇤UDeBx|

= 2 sup

(x,z)2T
|z⇤Udiag(eBx)⇠| = 2 sup

v2Av

|hv, ⇠i|, (10)

where v = (z⇤Udiag(eBx))⇤, and

A
v

:= {v : kxk2
2

+ kzk2
2

= 1, kxk
0

 s, kzk
0

 k}. (11)

The following lemma is proved in Appendix A.

Lemma III.2. Suppose ⇠ is a length-ñ random vector with
independent, zero-mean, unit-variance, and L-subgaussian
entries. For any � 2 (0, 1), if

m � c
5

��2sñµ2

(

eB) log

2 s log2 ñ

m � c
6

��2k log2 k log2 ñ,

then sup

v2Av
|hv, ⇠i|  �/2 holds with probability exceeding

1� exp(� log

2 s log2 ñ), where c
5

and c
6

are some constants
depending only on L.

Combining (10) with Lemma III.2, we have, for any
⌧ > 0, �

2

 c� holds with probability exceeding 1 �
exp(� log

2 s log2 ñ) for some constant c.
Finally, Theorem III.1 can be obtained by combining

the above results. Suppose, for any � 2 (0, 1), m �
c
5

��2sñµ2

(

eB)(log

2 s log2 ñ), m � c
6

��2k log2 m log

2 ñ and
µ(U) ⇠ 1/

p
m, then we have �s,k  �

1

+ �
2

 � with
probability exceeding

1� ñ�(log ñ log

2 s) � exp(�c log2 s log2 ñ)

= 1� ñ�(log ñ log

2 s) � ñ�c log2 s log ñ

= 1� 2ñ� log

2 s log ñ

The uniform recovery guarantee can be obtained by com-
bining Theorem II.2 and III.1.

A few remarks are in order. First, when eB is a bounded
column-wise orthonormal matrix, i.e., µ(eB) ⇠ 1/

p
ñ, the

bound on the sparsity of x? can be relaxed to kx?k
0


Cm/(log2 ñ log

2 m). The sparsity kz?k
0

is always a constant
fraction of the total number of measurements m regardless
the magnitude of the coherence µ(eB). When kwk

2

= 0,
Theorem III.1 implies that a sparse signal can be exactly
recovered by tractable l

1

minimization even if some parts of
the measurements are arbitrarily corrupted.

Second, the proposed class of structured sensing matrices
is equivalent to the UDB framework [7] but with an addi-
tional requirement of µ(U) ⇠ 1/

p
m. The UDB framework

has been proved to support uniform recovery guarantees for
conventional CS problem, while with the extra condition it
is now shown to provide uniform recovery guarantees for the
CS with sparse corruptions problem. Theorem III.1 holds for
many existing and new structured sensing matrices as long as
they can be decomposed into A = UDeB.

One application of the UDB framework is to simplify
the mask design in double random phase encoding (DRPE)
for optical image encryption. Consider an image f that is
sparse in the domain  , i.e., f =  x?, DRPE is based
on random masks placed in the input and Fourier planes
of the optical system [36], [37] . Mathematically, the mea-
surements can be written as y =

p
n
mR

⌦

F⇤⇤
1

F⇤
2

f + w,
where R

⌦

: Cn ! Cm represents an arbitrary/deterministic
subsampling operator with ⌦ being the set of selected row
indices, ⇤

1

and ⇤
2

are random diagonal matrices. By the
UDB framework, the random diagonal matrix ⇤

2

can be
replaced by a deterministic diagonal matrix constructed from a
Golay sequence g. The reason is that the measurement modelp

n
mR

⌦

F⇤⇤
1

Fdiag(g) x? can be decomposed into a UTFp
n
mR

⌦

F⇤, a random diagonal matrix ⇤
1

, and a orthonormal
matrix Fdiag(g) whose coherence is proven to be bounded
for many orthonormal transforms  , e.g., DCT, Haar wavelet
[7, Lemma IV.2]. When the measurements are corrupted by
impulse noise due to detector plane impairment, our theorem
above provides a recovery guarantee on the image.

Furthermore, the UDB framework emcompasses some pop-
ular structured sensing matrices, e.g., partial random circulant
matrices [14] and random probing [34]. To elaborate, consider
the partial random circulant matrices

A =

1p
m
R

⌦

C✏

where C✏ denotes the circulant matrix generated from ✏.
Suppose ✏ = F⇤⇠, where F is a normalized DFT matrix and ⇠
is a length-n random vector with independent, zero-mean, unit-
variance, and sub-Gaussian entries. Let D = diag(⇠), we have
A =

p
n
mR

⌦

F⇤DF. It can be observed that U =

p
n
mR

⌦

F⇤

is a UTF and B = F is a unitary matrix. Hence, Theorem
III.1 implies that any sparse signal x and sparse corruption
z can be faithfully recovered from the measurement model
y =

1p
m
R

⌦

C✏x
?
+ z? + w by the penalized recovery
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algorithm. The sparse recovery from partial random circulant
measurements can be applied in many common deconvolution
tasks, such as radar [38] and coded aperture imaging [39]. In
practice, where the measurements can be corrupted by impul-
sive noise due to bit errors in transmission, faulty memory
locations, and buffer overflow [40], our theorem guarantees
the recovery of both the signal of interest and the corruption.

In some situations, the proposed framework can still provide
reliable recovery guarantee even if the corruption is sparse in
some basis. Suppose the corruption is sparse under some fixed
and known orthonormal transformation H, i.e. H⇤H = I. We
consider the measurement model

y = Ax?
+Hz? +w. (12)

It is clear that this setting can be reduced to

H⇤y = H⇤Ax?
+ z? +H⇤w. (13)

Notice that H⇤A = H⇤UDeB :=

bUDeB, where bU = H⇤U
is still a UTF due to the orthogonality of H. Therefore, if
µ(bU) ⇠ 1/

p
m, Theorem III.1 still holds in this measurement

model.

B. Randomly sub-sampled orthonormal system

Next, we consider the corrupted sensing measurement
model for randomly sub-sampled orthonormal system. We
prove the uniform recovery guarantee for such matrices pro-
vided that the corruption is sparse on certain sparsifying
domain. Suppose � 2 Rn is a random Bernoulli vector
with i.i.d. entries such that P(�i = 1) =

m
n 8i 2 [n] and

⌦

0
= {i : �i = 1} with |⌦0| = M , the random sampling

operator R
⌦

0 2 RM⇥n is a collection of the i-th row of an n-
dimensional identity matrix for all i 2 ⌦

0. Here, M is random
with mean value m. The observation model is

y = Ax?
+Hz? +w, (14)

where A =

p
n
MR

⌦

0G, G 2 Cn⇥n is an orthonormal basis
and H 2 CM⇥M is a unitary matrix with µ(H) ⇠ 1/

p
M .

From our analysis in previous subsection, the uniform
recovery performance can be guaranteed as long as the as-
sociated matrix ⇥ satisfies the (s, k)-RIP. Since the matrix A
satisfies the standard RIP, the problem of proving the (s, k)-
RIP is again reduced to bounding the inner product term
sup

(x,z)2T |hAx,Hzi|. Detail proof of the following result
is given in Appendix B.

Theorem III.3. Suppose y = Ax?
+ Hz? + w with ⇥ =

[A, H] 2 CM⇥(n+M), A =

p
n
MR

⌦

0G and µ(H) ⇠ 1/
p
M .

If, for � 2 (0, 1),

m � max(c
7

��2snµ2

(G) log

2 s log2 n, c
8

�2s log4 n, 2c
9

log n),

m � c
10

��2knµ2

(G) log

2 k log2 n,

m  c
11

�2n,

where {ci}i=7,...,11 are constants, then with probability at least
1�2ñ� log

2 s logn�n�c9 , the (s, k)-RIP constant of⇥ satisfies
�s,k  �.

When G is a bounded orthonormal basis, i.e., µ(G) ⇠
1/

p
n, the bound on the sparsity of x? can be relaxed to

m � O(��2s log2 s log2 n, ��2k log2 k log2 n), which implies
that a sparse signal can be exactly recovered by tractable l

1

minimization even if the measurements are affected by corrup-
tion sparse on some bounded domain. A bounded orthonormal
basis can include the Fourier transform or the Hadamard
transform. In addition, in CS-based OFDM where the pilot is
generated from a Golay sequence and a random subsampler is
employed at the receiver (Section I-A), the effective orthonor-
mal basis is also bounded, i.e., µ(F⇤diag(g)F) ⇠ 1/

p
n [28].

C. Nonconvex optimization
We have shown the (s, k)-RIP for two popular classes

of structured sensing matrices, and proven the performance
guarantee for the recovery of the sparse signal and corruption
via the l

1

-norm minimization algorithm (3). However, our
(s, k)-RIP analysis on the structured sensing matrices is also
applicable to proving the recovery guarantee for nonconvex
optimization. Consider the following formulation of the prob-
lem

y = Ax?
+Hz?, (15)

It was demonstrated in [41] that the unique minimizer of the
lp minimization problem (0 < p < 1)

min

x,z
kxkpp + ⌫kzkpp s.t. Ax+Hz = y, (16)

is exactly the pair (x?, z?) if the combined matrix [A,H]

satisfies the (s, k)-RIP, where ⌫ is the regularization parameter.
In addition, the lp minimization approach still provides stable
recovery even when there is additional dense noise as long as
the (s, k)-RIP holds [41], [42]. The lp minimization problem
can be numerically solved via an iteratively reweighted least
squares (IRLS) method [43]. However, [41] only considers
the sensing model with A being random Gaussian matrices
and H being an identity matrix. With our (s, k)-RIP analysis,
many structured sensing matrices can be employed to provide
exact/stable recovery performance for this corrupted sensing
problem via lp minimization.

D. Comparison with related literature
In this part, we compare our main results with related

literature.
1) Sparse signal, sparse corruption: [10] proved that

sensing matrices with independent Gaussian entries provide
uniform recovery guarantee for corrupted CS by solving (3) for
all vectors x? and z? satisfying kxk

0

 ↵m/(log(n/m) + 1)

and kz?k
0

 ↵m. The difference is that our theorems come
with a tighter requirement on the sparsity of x? and the
sparsity of z?, which is a compensation on the employment
of structured measurements.

[10] also proved the recovery guarantee for structured
sensing matrices that belong to the framework proposed
in [12]. Here, faithful recovery is guaranteed provided that
kxk

0

 ↵m/(µ2

log

2 n) and kz?k
0

 �m/µ2, where µ is the
coherence of the sensing matrix. [11] considered the corrupted
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CS with sensing matrices that are randomly subsampled or-
thonormal matrix, and proved similar results. It is noted that
the requirements on the sparsity of x? in these works seem less
strict than that in our results. However, in both [10] and [11],
performance guarantees of their structured sensing matrices
rely on the assumption that the support set of x? or z? is
fixed and the signs of the signal are independently and equally
likely to be 1 or �1 [10, Section 1.3.2] [11, Section II.B]
(i.e. a nonuniform recovery guarantee). While in our theorem,
two classes of structured sensing matrices (including randomly
subsampled orthgonal matrix) are shown to provide uniform
recovery guarantee for corrupted CS.

We note that recently the uniform recovery guarantee for
bounded orthonormal systems is proven in [13]. The bounded
orthonormal systems is more general than the random sub-
sampled orthonormal matrix considered in our second class.
However, the corruption models are different: the corruption
vector in [13] is sparse in time domain, whereas our theorem
considers corruption in sparsifying domain with µ(H) ⇠
1/

p
M . Due to this difference in the corruption model, the

techniques used to prove the (s, k)-RIP (specifically, bound the
inner product sup

(x,z)2T |hAx,Hzi|) are essentially different.

2) Structured signal, structured corruption: In a recent
work [44], sensing with random Gaussian measurements for
general structured signals and corruptions (including sparse
vectors, low rank matrix, sign vectors and etc) has been
proven. However, our study departs from it in the follow-
ing aspects: [44] proved a nonuniform recovery guarantee
for the recovering of sparse signals from sparse corruptions
and dense noise. In our paper, we established a uniform
recovery guarantee for the corresponding problem. Moreover,
[44] considered random Gaussian matrices, while we propose
structured sensing matrices.

We have shown that a large class of structured sensing
matrices can provide faithful recovery for the sparse sensing
with sparse corruption. Whether such structured measurements
can be applied in a general corrupted sensing problem (e.g.
structured signal with structured corruption) is still open.
Extension of our measurement framework to the general
corrupted sensing problem is interesting for further study.

Other works related to the recovery of signals from cor-
rupted measurements include [20], [45]–[51]. However, their
models are different from the one in our paper.

Remark III.4. We note that the value of the regularization
parameter can be chosen as � =

p
s/k. In practice, when

no a priori knowledge on the sparsity levels of the signal and
the corruption is available, � can usually be taken by cross
validation. On the other hand, if it is known a priori that
the corruption (the signal) is very sparse, one can increase
(decrease) the value of � to improve the overall recovery per-
formance. Similar discussion on the theoretical and practical
settings of the regularization parameter has also been noted in
[10, Section 1.3.3], [11, Section II.E, Section VII], [44, Section
III.B]. In addition, an iteratively reweighted l

1

minimization
method can be used to adaptively improve the setting of � in
practice [13].

IV. NUMERICAL SIMULATIONS

In this section, we verify and reinforce the theoretical
results of Section III with a series of simulations. We present
experiments to test the recovery performance of the penalized
recovery algorithm for the proposed structured sensing matri-
ces. In each experiment, we used the CVX Matlab package
[52], [53] to specify and solve the convex recovery programs.

Two different ways of generating sparse vectors are consid-
ered:

• Gaussian setting: the nonzero entries are drawn from
a Gaussian distribution and their locations are chosen
uniformly at random,

• Flat setting: the magnitudes of nonzero entries are 1 and
their locations are chosen uniformly at random.

A. Penalized Recovery
This experiment is to investigate the empirical recovery

performance of the penalized recovery algorithm (3) when
the dense noise is zero. Here, the sensing matrix (Mtx-I)
A = UDB of size m ⇥ n with m = 256 and n = 512

is constructed as below.
1) Arbitrarily select m = 256 rows from a 512 ⇥ 512

Hadamard matrix to form a new matrix, which is then
normalized by 1/

p
m to form the UTF U.

2) The diagonal entries of the diagonal matrix D are i.i.d.
Bernoulli random variables.

3) B is a normalized Hadamard matrix.
We vary the signal sparsity and the corruption sparsity with
s 2 [1, 100] and k 2 {10, 20, 30}. For each pair of (s, k),
we draw a sensing matrix as described above and perform the
following experiment 100 times:

1) Generate x? with sparsity s by the Gaussian setting
2) Generate z? with sparsity k by the Gaussian setting
3) Solve (3) by setting � = 1

4) Declare success if4

kˆx� x?k
2

/kx?k
2

+ kˆz� z?k
2

/kz?k
2

< 10

�3

The fraction of successful recovery averaged over the 100 iter-
ations is presented in Fig. 1a. To demonstrate the performance
for signals and corruptions that do not have i.i.d. signs, the
experiment is repeated by generating the sparse vectors x?

and z? based on the Flat setting as shown in Fig. 1b. It can be
seen that in both scenarios the performance improves as the
sparsity of the corruption decreases.

Next, we demonstrate the performance of the penalized re-
covery algorithm when the sensing matrix is from a randomly
subsampled orthonormal matrix. The sensing matrix (Mtx-II)
A is a collection of randomly selected M = 256 rows from
a 512 ⇥ 512 Hadamard matrix, and normalized by

p
n/M .

The corruption is Hz, where H is an M ⇥ M normalized
Hadamard matrix. For each pair of (s, k), we repeat the above
steps 100 times to obtain the probability of success (see Fig.
2). It is noted that the recovery performance of Mtx-I is better
than that of Mtx-II. This seems consistent with our theoretical
analysis as the random subsampled orthonormal matrix shows

4This criterion indicates that both x

? and z

? have been faithfully recovered.
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(b) Flat Setting

Fig. 1. Probability of success as a function of the signal sparsity s using penalized recovery with signal dimension n = 512, number of measurements
m = 256, and the corruption sparsity k = {10, 20, 30} for Mtx-I.
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(b) Flat Setting

Fig. 2. Probability of success as a function of the signal sparsity s using penalized recovery with signal dimension n = 512, number of measurements
m = 256, and the corruption sparsity k = {10, 20, 30} for Mtx-II.

more stringent recovery condition than the UDB framework
(see Theorem III.1 and III.3). However, since the (s, k)-RIP
is a sufficient condition for the recovery guarantee, it may not
fully reflect the performance gap between the two classes of
structured sensing matrices. Further investigation based on a
necessary and sufficient condition for the recovery guarantee
of the corrupted CS problem is a difficult, but interesting open
question.

B. Stable recovery
We study the stability of the penalized recovery algorithms

when the dense noise is nonzero, i.e., " 6= 0, and compare
the performance of structured sensing matrix (Mtx-I) with
random Gaussian sensing matrix. In this experiment, the 256-
by-512 sensing matrix (Mtx-I) is constructed as in previous
subsection. We fix the signal and corruption sparsity levels at
s = 10 and k = 10 respectively. The dense noise w consists
of i.i.d. Bernoulli entries with amplitude ". We vary the noise
level with " 2 [0, 0.1], and perform the following experiment
100 times for each ":
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Fig. 3. Empirical recovery error versus the noise level ".

1) Generate x? with s = 10 by the Gaussian setting
2) Generate z? with k = 10 by the Gaussian setting
3) Solve penalized recovery (p-rec) algorithm (3) by setting

� = 1

4) Record the empirical recovery error kˆx � x?k
2

+ kˆz �
z?k

2

An average recovery error is then obtained for each ". Fig. 3
depicts the average error with varying noise levels. The results
in Theorems II.2 and III.1 imply that the recovery errors are
bounded by the noise level " up to some constants. Fig. 3
clearly shows this linear relationship. In addition, we repeat the
above experiments with an iteratively reweighted least squares
approach [43] using p = 0.5. As shown in Fig. 3, the structured
sensing matrix is still able to exhibit stable performance by the
nonconvex optimization algorithm.

V. CONCLUSION

We have studied a generalized CS problem where the
measurement vector is corrupted by both sparse noise and
dense noise. We have proven that structured random matrices
encompassed in the UDB framework or the randomly subsam-
pled orthonormal system can satisfy the sufficient condition,
i.e., the (s, k)-RIP. These structured matrices can therefore be
applied to provide faithful recovery of both the sparse signal
and the corruption by the penalized optimization algorithm as
well as the nonconvex optimization algorithm. Our simulations
have clearly illustrated and reinforced our theoretical results.

APPENDIX A
PROOF OF LEMMA III.2

Throughout the proof in this and the following sections, C
and c denote an absolute constant whose values may change
from occurrence to occurrence.

A metric space is denoted by (T, d), where T is a set
and d is the notion of distance (metric) between elements

of the set. For a metric space (T, d), the covering number
N(T, d, u) is the minimal number of open balls of radius u
needed to cover (T, d). A subset T of T is called a u-net of
T if every point x 2 T can be approximated to within u by
some point ¯x 2 T , i.e., d(x, ¯x)  u. The minimal cardinality
of T is equivalent to the covering number N(T, d, u). The p-
th moment (or the Lp-norm) of a random variable is denoted
by kXkLp = (E|X|p)1/p.

We aim to upper bound the variable � := sup

v2Av
|hv, ⇠i|

which is the supremum of a stochastic process with the index
set A

v

. To complete the proof, we require the following
important result due to Krahmer et al.:

Theorem A.1. [14, Theorem 3.5 (a)] Let A be a set of
matrices, and let ⇠ be a random vector whose entries ⇠j are
independent, mean 0, variance 1, and L-subgaussian random
variables. Set

dF (A) = sup

S2A
kSkF , d

2!2

(A) = sup

S2A
kSk

2!2

,

NA(⇠) := sup

S2A
kS⇠k

2

, E = �
2

(A, k · k
2!2

) + dF (A).

Then, for every p � 1,

kNA(⇠)kLp  C(E +

p
pd

2!2

(A)), (17)

where C is a constant depends only on L.

Here, NA(⇠) represents the supremum of certain stochastic
processes indexed by a set of matrices A. The above Proposi-
tion implies that NA(⇠) can be bounded by three parameters:
the suprema of Frobenius norms dF (A), the suprema of
operator norms d

2!2

(A) and a �
2

-functional �
2

(A, k · k
2!2

),
which can be bounded in terms of the covering numbers
N(A, k · k

2!2

, u) as below.

�
2

(A, k · k
2!2

)  c

Z d2!2(A)

0

p
logN(A, k · k

2!2

, u) du,

where the integral is known as Dudley integral or entropy
integral [54].

We can transfer the estimates on the moment (17) to a tail
bound by the standard estimate due to Markov’s inequality
(see [5, Proposition 7.15]).

Proposition A.2. Following the definitions in Theorem A.1,
for t � 1,

P(NA(⇠) � CE + Cd
2!2

(A)t)  exp(�t2). (18)

It can be observed that � can be expressed in the form
of NA(⇠), where S and A are replaced with v and A

v

,
respectively. Now, we only need to estimate the parameters
dF (Av

), d
2!2

(A
v

) and �
2

(A
v

, k · k
2!2

) before bounding �

by using Theorem A.2. Since A
v

is a set of vectors, we have
dF (Av

) = d
2!2

(A
v

) and �
2

(A
v

, k · k
2!2

) = �
2

(A
v

, k · k
2

).
For any vector x 2 Ds,n, we denote by xs the length-

s vector that retains only the non-zero elements in x. And
correspondingly for any vector b 2 Cn, we denote by bs

the length-s vector that retains only the elements that have
the same indexes as those of the non-zero elements in x. We
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have, for any v 2 A
v

,

kvk
2

= kz⇤Udiag(eBx)k
2

 kz⇤Uk
2

keBxk1

=

r
ñ

m
kzk

2

max

j2[ñ]
{|heB

(j,:),xi|}

=

r
ñ

m
kzk

2

max

j2[ñ]
{|heBs

(j,:),x
si|}


r

ñ

m
µ(eB)

p
skxk

2

kzk
2

 1

2

r
ñ

m
µ(eB)

p
s,

where the last inequality is due to kxk2
2

+kzk2
2

= 1. Therefore,

dF (Av

) = d
2!2

(A
v

)  1

2

r
ñ

m
µ(eB)

p
s. (19)

Following the same steps, we can alternatively obtain, for
any v 2 A

v

,

kvk
2

= kz⇤Udiag(eBx)k
2

 kz⇤Uk1keBxk
2

 1

2

µ(U)

p
k.

This provides another upper bound

dF (Av

) = d
2!2

(A
v

)  1

2

µ(U)

p
k. (20)

We note that both (19) and (20) are valid bounds, and
they are not comparable to each other since the relationship
between s and k is unknown. It will be clear later that both
bounds are useful for computing the entropy integrals. In
particular, (19) and (20) are used for computing I

1

and I
2

respectively (as in (23)).
Next, we bound �

2

-functional �
2

(A
v

, k · k
2

) by estimating
the covering numbers N(A

v

, k · k
2

, u). The derivation is
divided into two steps.

Step 1. Decompose N(A
v

, k · k
2

, u). Let D
1

= {x 2 Cn
:

kxk2
2

 1, kxk
0

 s} and define the semi-norm k · kK1 as

kxkK1 = kUdiag(eBx)k
2!2

8x 2 Cn. (21)

For the metric space (D
1

, k · kK1), we take D
1

to be a u
2

-net
of D

1

with |D
1

| = N(D
1

, k · kK1 ,
u
2

). Let D
2

= {z 2 Cm
:

kzk2
2

 1, kzk
0

 k} and define the semi-norm k · kK2 as

kzkK2 = keB⇤diag(U⇤z)k
2!2

8z 2 Cm. (22)

For the metric space (D
2

, k · kK2), we take D
2

to be a u
2

-net
of D

2

with |D
2

| = N(D
2

, k · kK2 ,
u
2

).
Now, let A

v

= {(¯z⇤Udiag(eB¯x))⇤ :

¯x 2 D
1

, ¯z 2 D
2

} and
remark that |A

v

|  |D
1

||D
2

|. It remains to show that for all
v 2 A

v

, there exists ¯v 2 ¯A
v

with kv � ¯vk
2

 u.
For any v = (z⇤Udiag(eBx))⇤ 2 A

v

, there exist ¯v =

(

¯z⇤Udiag(eB¯x))⇤ 2 ¯A
v

with ¯x 2 D
1

and ¯z 2 D
2

obeying

kx� ¯xkK1  u
2

and kz� ¯zkK2  u
2

. This gives

kv � ¯vk
2

= kz⇤Udiag(eBx)� ¯z⇤Udiag(eB¯x)k
2

= kz⇤Udiag(eBx)� z⇤Udiag(eB¯x)

+ z⇤Udiag(eB¯x)� ¯z⇤Udiag(eB¯x)k
2

 kz⇤Udiag(eB(x� ¯x))k
2

+ k(z� ¯z)⇤Udiag(eB¯x)k
2

= kz⇤Udiag(eB(x� ¯x))k
2

+ k¯x⇤ eB⇤diag(U⇤
(z� ¯z))k

2

 kzk
2

kUdiag(eB(x� ¯x))k
2!2

+ k¯xk
2

keB⇤diag(U⇤
(z� ¯z))k

2!2

(a)
 kx� ¯xkK1 + kz� ¯zkK2  u,

where (a) is due to the fact that kzk
2

 1 and k¯xk
2

 1.
Hence,

N(A
v

, k · k
2

, u)  |A
v

|
 N(D

1

, k · kK1 , u/2)N(D
2

, k · kK2 , u/2).

The �
2

-functional �
2

(A
v

, k · k
2

) can now be estimated by

�
2

(A
v

, k · k
2

)  c

Z d2!2(A)

0

p
logN(A

v

, k · k
2

, u)du

.
Z d2!2(A)

0

p
logN(D

1

, k · kK1 , u/2) du

| {z }
I1

+

Z d2!2(A)

0

p
logN(D

2

, k · kK2 , u/2) du

| {z }
I2

.

(23)

Step 2. Estimate the covering numbers N(D
1

, k · kK1 , u/2)
and N(D

2

, k·kK2 , u/2) and the entropy integrals. We estimate
each covering number in two different ways. For small value of
u, we use a volumetric argument. For large value of u, we use
the Maurey method ( [14, Lemma 4.2], or [5, Problem 12.9]).
Then, the resultant covering number estimates can be used to
compute the entropy integrals I

1

and I
2

. Similar techniques
on the covering number estimation and the entropy integral
computation have been used in the CS literature, i.e., [6], [7],
[14], [55].

From [7, Equation (28)] and (19), we have

I
1

.
r

sñ

m
µ(eB)(log s)(log ñ). (24)

It remains to estimate N(D
2

, k · kK2 , u/2) and compute I
2

.
1) small u. We observe that D

2

is a subset of the union of�m
k

�
unit Euclidean balls Bk

2

,

Bk
2

:= {z 2 Cm
: kzk

2

 1, |supp(z)|  k}. (25)

For any z 2 D
2

,

kzkK2 = keB⇤diag(U⇤z)k
2!2

 kU⇤zk1  max

i2[n]
|hU

(:,i), zi|

 µ(U)kzk
1

 µ(U)

p
kkzk

2


r

k

m
kzk

2

, (26)
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where the last step is due to the assumption that µ(U) ⇠ 1p
m

.
Therefore,

N(D
2

, k · kK2 , u/2) 
✓
m

k

◆
N(Bk

2

, k · kK2 , u/2)


✓
m

k

◆
N(Bk

2

,

r
k

m
k · k

2

, u/2)

 (

em

k
)

k
(1 + 4

r
k

m

1

u
)

k, (27)

where the last inequality is an application of [6, Proposition
10.1] and [5, Lemma C.5].

2) large u. For any z 2 D
2

, we have kzk
1

 p
kkzk

2

p
k, which gives

D
2

⇢
p
kBm

1

:= {z 2 Cm
: kzk 

p
k}.

Then,

N(D
2

, k · kK2 , u/2)  N(

p
kBm

1

, k · kK2 , u/2)

= N(Bm
1

, k · kK2 , u/(2
p
k)).

Based on the Maurey method, for 0 < u < 1

2

µ(U)

p
k, the

covering number can be estimated by [6, Lemma 8.3]
p
logN(D

2

, k · kK2 , u/2) .
p
kµ(U)

p
log ñ logmu�1


r

k

m

p
log ñ logmu�1. (28)

We note that the estimation based on Maurey method
depends on the range of the parameter u (see [6, Lemma 8.3]),
which is the reason why we employ different bounds ((19) and
(20)) when computing the entropy integrals I

1

and I
2

.
We now combine the results (27) and (28) to estimate the en-

tropy integral I
2

: we apply the first bound for 0 < u  1

10

q
1

m ,

and the second bound for 1

10

q
1

m < u  d
2!2

(A
v

) =

1

2

q
k
m .

It reveals that

I
2

.
r

k

m
log ñ log k. (29)

Combine (23), (24) and (29)

�
2

(A
v

, k · k
2

) .
r

sñ

m
µ(eB)(log s)(log ñ)

+

r
k

m
log ñ log k. (30)

Finally, we are ready to complete the proof by applying
Proposition A.2. For the assumption on m and p, � 2 (0, 1),

m � c
1

��2sñµ2

(

eB) log

2 s log2 ñ

m � c
2

��2k log2 k log2 ñ,

we have, by (19),

dF (Av

) = d
2!2

(A
v

) . �

log s log ñ
, �

2

(A
v

, k · k
2

) . �.

By substituting the above results into Proposition A.2 (let t =
log s log ñ), one obtains

P( sup
v2Av

|hv, ⇠i|  c�) � 1� exp(� log

2 s log2 ñ). (31)

The proof is completed by incorporating the constant c into
c
1

, c
2

.

APPENDIX B
PROOF OF THEOREM III.3

Recall that in the measurement model y = Ax?
+Hz?+w,

A =

p
n
MR

⌦

0G is a randomly sub-sampled unitary matrix
and H 2 CM⇥M is a unitary matrix with µ(H) ⇠ 1/

p
M .

The following Lemma from [56] is needed.

Lemma B.1 (Theorem 3.3 [56]). For the matrix A =p
n
mR

⌦

0G, if for � 2 (0, 1),

m � c��2s log4 n, (32)

then with probability at least 1 � n� log

3 n the restricted
isometry constant �s of A satisfies �s  �.

The (s, k)-RIP associated with⇥ = [A, H] can be bounded
by

�s,k  sup

(x,z)2T

��kAxk2
2

� kxk2
2

��

| {z }
�1

+2 sup

(x,z)2T
|hAx,Hzi|

| {z }
�2

,

(33)

where T := {(x, z) : kxk2
2

+ kzk2
2

= 1, kxk
0

 s, kzk
0


k,x 2 Cn, z 2 Cm}.

By Lemma B.1, we have �
1

 �/2 holds with probability
1� n� log

3 n for any � 2 (0, 1) if m � c��2s log4 n.
Define a random vector d 2 Cn with i.i.d. entries satisfying

�i =

q
m(n�m)

n2 di+
m
n . Assume ⇤ = diag(�) and H⇤R

⌦

0
=

U0. We have,

�
2

= 2 sup

(x,z)2T
|h
r

n

M
R

⌦

0Gx,Hzi|

= 2 sup

(x,z)2T

����

r
n

M
z⇤U0⇤Gx

����

= 2 sup

(x,z)2T

����

r
n

M
z⇤U0diag(Gx)�

����

 2 sup

(x,z)2T

����
1

2

r
n

M
z⇤U0diag(Gx)d

����
| {z }

t1

+ 2 sup

(x,z)2T

�����

r
m2

Mn
z⇤U0Gx

�����
| {z }

t2

,

where the last inequality is due to the fact that
q

m(n�m)

n2  1

2

for any m  n.
Since � is a random Bernoulli vector with i.i.d. entries,

by construction d is a length-n random vector with in-
dependent, zero-mean, unit-variance, and L-subgaussian en-
tries. Hence, the bound for t

1

can be formulated as the
supremum of a stochastic process with the index A

r

, where
r =

p
n
M z⇤U0diag(Gx) and A

r

:= {r : kxk2
2

+ kzk2
2

=



11

1, kxk
0

 s, kzk
0

 k}. For any r 2 A
r

,

krk
2

=

r
n

M
kz⇤U0diag(Gx)k

2


r

n

M
kz⇤H⇤R

⌦

0k
2

kGxk1

=

r
n

M
kzk

2

max

j2[n]
{|hG

(j,:),xi|}

 1

2

r
n

M
µ(G)

p
s,

krk
2

=

r
n

M
kz⇤U0diag(Gx)k

2


r

n

M
kz⇤H⇤k1kR

⌦

0Gxk
2


r

n

M
µ(H)

p
kkG

(⌦

0,:)xk2

 1

2

p
nµ(G)µ(H)

p
k.

Therefore,

dF (Ar

)  1

2

r
n

M
µ(G)

p
s,

dF (Ar

)  1

2

p
nµ(G)µ(H)

p
k.

By following the same proof steps as in Appendix A, we
have

P( sup
r2Ar

|hr,di|  c�) � 1� exp(� log

2 s log2 n) (34)

provided that

M � c��2snµ2

(G) log

2 s log2 n

M � c��2knµ2

(G) log

2 k log2 n.

Bernstein’s inequality [57, Theorem A.1.13] gives, for any
⌫ > 0,

P(M > (1� ⌫)m) � 1� exp

✓
�m⌫2

2

◆
. (35)

Hence, if

m � 1

1� ⌫
c��2snµ2

(G) log

2 s log2 n

m � 1

1� ⌫
c��2knµ2

(G) log

2 k log2 n,

then

P( sup
r2Ar

|hr,di|  c�) � 1� exp(� log

2 s log2 n)

� exp

✓
�m⌫2

2

◆
.

By assuming m � 2c0 log n and ⌫ =

q
2c0 logn

m , the above
probability of success can be written as

P( sup
r2Ar

|hr,di|  c�) � 1� n� log

2 s logn � n�c0 . (36)

For the second term, we have

t
2

= sup

(x,z)2T

����
m2

Mn
z⇤U0Gx

����

 m2

Mn
kzk

2

kxk
2

 1

2

m2

Mn
,

where the last inequality is due to kxk2
2

+kzk2
2

= 1. Therefore,
t
2

 �/2 for any � 2 (0, 1) if M ⇠ m and m  �n.
By Bernstein’s inequality, this condition can be satisfied with
probability exceeding 1�n�c0 as long as m  c�2n. Theorem
III.3 is proved by combining the above results.
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