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Abstract

Background: Vision-based surveillance and monitoring is a potential alternative for early detection of respiratory
disease outbreaks in urban areas complementing molecular diagnostics and hospital and doctor visit-based alert
systems. Visible actions representing typical flu-like symptoms include sneeze and cough that are associated with
changing patterns of hand to head distances, among others. The technical difficulties lie in the high complexity and
large variation of those actions as well as numerous similar background actions such as scratching head, cell phone
use, eating, drinking and so on.

Results: In this paper, we make a first attempt at the challenging problem of recognizing flu-like symptoms from
videos. Since there was no related dataset available, we created a new public health dataset for action recognition
that includes two major flu-like symptom related actions (sneeze and cough) and a number of background actions.
We also developed a suitable novel algorithm by introducing two types of Action Matching Kernels, where both types
aim to integrate two aspects of local features, namely the space-time layout and the Bag-of-Words representations. In
particular, we show that the Pyramid Match Kernel and Spatial Pyramid Matching are both special cases of our
proposed kernels. Besides experimenting on standard testbed, the proposed algorithm is evaluated also on the new
sneeze and cough set. Empirically, we observe that our approach achieves competitive performance compared to the
state-of-the-arts, while recognition on the new public health dataset is shown to be a non-trivial task even with simple
single person unobstructed view.

Conclusions: Our sneeze and cough video dataset and newly developed action recognition algorithm is the first of
its kind and aims to kick-start the field of action recognition of flu-like symptoms from videos. It will be challenging but
necessary in future developments to consider more complex real-life scenario of detecting these actions
simultaneously from multiple persons in possibly crowded environments.

Background
While the recent swine flu pandemic was luckily less
severe than initially thought, there remains a constant
threat of mutated or reassorted influenza strains that give
rise to new outbreaks that could range from small local
clusters [1] to seasonal epidemics [2] or even global pan-
demics [3,4]. Similarly, history has also shown us that
previously unknown pathogens such as the SARS coron-
avirus could emerge and cause serious outbreaks [5]. Just
in 2012 and 2013, there were 2 new outbreaks of differ-
ent viruses with pandemic potential, MERS-CoV [6] and
H7N9 [7], triggering increased surveillance alerts. Respi-
ratory diseases often manifest themselves through similar
flu-like symptoms and early detection of new outbreaks
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is of central importance in order to delay or prevent their
escalation and wider spread. However, classical surveil-
lance systems are mostly relying on time-delayed and
costly virological tests requiring hospital or physician vis-
its [8-10].
One potential alternative is to detect typical flu-like

symptom in human behaviors, by automatically analyz-
ing video footage from public areas such as airports, bus
stations, which exploits the existing vision-based surveil-
lance infrastructure in public venues. This will provide
a unique valuable source of information that is comple-
mentary to the existing public health monitoring network.
Under this context, we make a first attempt on the recog-
nition of typical flu-like symptoms: sneeze and cough
actions, and propose a novel discriminative approach
which is further evaluated on a new Sneeze-Cough action
dataset.
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Major contributions Our first contribution is a new
video action dataseta dedicated towards the problem of
flu-like symptoms detection that is of central importance
in early surveillance of respiratory disease outbreaks. A
series of experiments are conducted with performance
analysis that reveals some of the characteristics of this
dataset. Our second contribution is two novel types of
Action Matching Kernels (AMKs) that are shown to
perform competitively comparing to the state-of-the-art
methods. In particular, we show that Pyramid Match
Kernel [11] and Spatial Pyramid Matching [12] are both
special cases of the proposed kernels. The kernels are also
closely connected to the recent developments in Hough
transform [13,14].

Related work Current respiratory disease surveillance
systems are known to lag significantly behind the onset
of outbreaks [15,16], mostly due to their heavy reliance
on virological and clinical data including physician vis-
its. Very recently a web-based surveillance tool has
been developed by Google [17], which is made possible
through search engines by taking advantage of the social
health-seeking behavior of patients. There are nonethe-
less concerns that there sometimes exists non-negligible
bias in the detection results driven by disease public-
ity rather than the disease itself. The work presented in
this paper, to our best knowledge, is the first to exam-
ine this problemwith the help of vision-based surveillance
and analysis.
Research on video action recognition and retrieval [18]

has recently witnessed a dramatic increase, mainly due
to the vast demand to analyze and understand human
actions from video footage of everyday life, and from
web hosts such as YouTube, MySpace Videos, Flickr,
and ScienceStage. Established methods for modeling
and analyzing human actions are often generative sta-
tistical approaches, especially the Markov models e.g.
[19,20]. Recently, the discriminative learning scheme
has also been extended to allow structured predictions,
e.g. Conditional Random Fields [21]. They neverthe-
less often rely on learning with sophisticated parametric
models.
Similar to a number of recent works [22-25], we also

assume a human action can be sufficiently described by
a set of local features in space-time. A local feature typi-
cally comes with two aspects: a descriptor vector and its
space-time location. As the number and locations of the
local features are usually not fixed, often a bag-of-words
(BoW) method is utilized to map the feature descriptors
to a histogram vector in the space spanned by codewords,
as in [11,24,26], or hierarchical codewords as described in
the Pyramid Match Kernel [11]. The BoW representation
has demonstrated impressive performance on image and

action analysis tasks. Nevertheless it does not retain infor-
mation regarding space-time layout of the local features.
On the other hand, the spatial (or space-time) layout of

local features has long been regarded as an important cue
to infer the existence of a global object from local features.
The elegant Hough transform [27] is originally devised
to detect lines and circles. An important generalization
is developed by Ballard [28] to detect objects of arbitrary
shapes. Leibe et al. in their seminal work [13] consider a
probabilistic variant of the Hough transform, where the
BoW model is integrated into the voting space by means
of conditional and posteriori probabilities. This is further
followed by [14] where a dedicated max-margin learning
method is developed. Throughout these methods, a cru-
cial step is the construction of a voting space, where all
local features are made to vote for the existence and if so,
the location of the global object they belong to. An inter-
esting observation is that this voting space is employed
by [14] in an implicit manner. As clearly revealed from
Equations (12) and (13) of [14], the model or the param-
eter vector W is implicitly related to the voting space: W
is interpreted as weights for the activations of codewords,
where influence from the voting space is implicitly carried
out via the activations. A latent variant has also been used
for object detection [29].
Recently there have been attempts to integrate the two

sources of information: BoW and the space-time lay-
out. The Spatial Pyramid Matching [12], a probabilistic
variant of Hough transform (also called Implicit Shape
Model) [13], and utilizing the skeleton structure of human
body [30], are such examples. In the next section, we
show that our AMK explicitly incorporates the space-time
layout and the BoW model. We will also show that the
Pyramid Match Kernel and the Spatial Pyramid Match-
ing are special cases of our proposed AMKs with proper
feature extensions. Section ‘Sneeze-Cough: a public health
surveillance dataset’ will describe our new Sneeze-Cough
dataset in details, and followed the experimental results in
Section ‘Results and discussion’.

Methods
In this section, we propose two types of Action Matching
Kernels (AMKs) that integrate both BoW and space-time
layout. The first type is by means of unary and binary
extensions, while the second type is a modification of the
successful Pyramid Match Kernel. As shown in Figure 1,
an action can be naturally depicted by a set of local fea-
tures within a space-time action volume (the green cube
illustrated in Figure 1(a) bottom left), which we also refer
to as action volume or simply volume when there is no
confusion. In both cases, an input action corresponds to
both a BoW model consisting of K codewords, as well as
the features’ locations in the space-time volume.
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Figure 1 The unary and binary feature extensions. An illustration of the unary and binary feature extensions for the proposed Type I Kernels.
Here local features (‘+’s) of an action is contained in a space-time volume displayed as a green cube. Besides residing in this local coordinate, each
feature also has a descriptor that is further mapped to the histogram of codewords representation using the bag-of-words model. This figure
displays two examples of the proposed Type I Kernels. (a) presents a unary extension where the local volume is further partitioned into concentric
layers. (b) demonstrates a binary extension scheme that considers the distance and codeword entries of feature pairs. Note other extension
schemes are also possible.

AMK Type I: unary and binary extensions
Presented with such an action, below we describe a set of
kernel design recipes that are able to integrate both the
BoW representation and the space-time locations of local
features.

Unary extensions A unary extension partitions the vol-
ume into disjoint parts. One such scheme is to partition
into concentric layers, as displayed in Figure 1(a). By pool-
ing the codeword assignments of these features in their
BoW representation, one partition is characterized by a
histogram of length K when K codewords are used. A
length K ×S vector is thus produced as a unary extension,
by concatenating over S partitions.
Other partition schemes are also possible. For exam-

ple, partitioning the volume into half in each dimension
results in 2 × 2 × 2 blocks, and is denoted as S = 8. We
can further partition each block into smaller ones, where
each block has its own histogram. Interestingly, this is the
same three-layer spatial pyramid as depicted in Figure 1
of Spatial Pyramid Matching [12]. The only difference is
that here we consider a 3D space-time volume instead of
a 2D image space. By summing all the histograms over
layers with proper weights, and by using histogram inter-
section similarity measure, we get back exactly the Spatial
Pyramid Matching [12].
In fact, the degenerate case of unary extensions by set-

ting S to 1 returns the original BoWmodel. Meanwhile, by

fixing S to 1, considering a BoW model with hierarchical
codewords, and by using histogram intersection similarity
measure, the Pyramid Match Kernel [11] is recovered.

Binary extension Different from the unary extensions,
a binary extension considers the interactions between a
pair of features in space-time. Figure 1(b) provides such
an example, where similar to the concept of co-occurrence
matrix, a 3-dimensional array or 3-tensor is used to accu-
mulate the counts of feature pairs using both volume and
BoW representations, indexed by (codewords, codewords,
distance). Naively this leads to a vector of lengthK×K×S,
by accumulating the quantized distance of each feature
pair with S possible outcomes. In practice it is further
summarized into a more compact vector representation:
For a fixed distance, (a) a K-dim vector is extracted from
the diagonal elements. (b) a K-dim vector is obtained by
summing over all the off-diagonal elements row-wise. For
both cases the output vectors are normalized to sum to
1. As each case ends up giving a K × S vector, a concate-
nation of both finally leads to a vector representation of
length 2K × S.

From feature extensions to kernels It is straightforward
to carry on and build a kernel from the extended vec-
tors mentioned above. In fact, a kernel can be built by
considering different feature extension, by examining on
a variety of similarity measures (e.g. linear, χ2, histogram
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intersection, radial basis function), and by choosing from
hierarchical vs. standard codeword representations. A
family of kernels can thus be devised using the above
recipes, where the examples we illustrate in the paper
comprise only a small fraction.

AMK Type II: a modified pyramid match kernel
Original pyramid match kernels In the original Pyra-
mid match kernel paper [11], a video action is represented
as a set of local features descriptors excluding their space-
time location information. Therefore, an action of interest
is represented as P = {�pi ∈ R

d}m
i=1. This is followed by

building hierarchical codewords using e.g. hierarchical K-
means. In each scale l ∈ 0, . . . , L − 1, a histogram Hl
of codewords can be computed. Note the length of cor-
responding histogram decreases as we navigate to the
upper layers of the hierarchy. By concatenating these his-
tograms, the action P is then characterized as a feature
vector �(P) = (H0(P), . . . ,HL−1(P)). As in [11], The ker-
nel function between two actions P and Q is thus defined
by

K (�(P),�(Q)) =
L−1∑
l=0

wlNl. (1)

Here wl is used to limit the contribution from a par-
ticular scale of histogram, as inversely proportional to its
scale, wl = 2−l.Nl is the partial increment from level l− 1
to level l,

Nl = τ (Hl(P),Hl(Q)) − τ
(
Hl−1(P),Hl−1(Q)

)
. (2)

τ denotes the histogram intersection:

τ (Hl(P),Hl(Q)) =
∑
k

min
{
Hk
l (P),Hk

l (Q)
}
, (3)

which can be equivalently written as

τ =
∑
k

δ
(
Hk
l (P) ≤ Hk

l (Q)
) ∑
ID(p)==k

1

+
∑
k

δ
(
Hk
l (P) > Hk

l (Q)
) ∑
ID(q)==k

1, (4)

where ID(·) stores the codeword index of a local feature,
δ is the indicator function, and k is an index of the set of
codewords.

AMK type II As illustrated in Figure 2, instead of using
histogram intersection of Eq. (3), we consider a matching
function by modifying Eq. (4) to incorporate space-time
locations of local features:

Figure 2 A toy example. A toy example to illustrate the geometric
measureMl(p, q) of Eq. (5) for a feature pair (p, q) at codeword k, and
with Hk(P) = Hk(Q) = 1. Pyramid Match Kernel [11] returns 1, since it
ignores feature space-time locations; Our AMK Type II returns a

matching score using Eq. (6) as:
(
1 − |3−6|

6

)
∗

(
1 − |7−5|

8

)
∗(

1 − |1−3|
4

)
= 0.5 ∗ 0.75 ∗ 0.5 = 0.1875, which indicates the

geometric affinity of the two features.

τ =
∑
k

δ
{
Hk
l (P) ≤ Hk

l (Q)
} ∑
ID(p)==k

min
ID(q)==k

Ml(p, q)

+
∑
k

δ
{
Hk
l (P) > Hk

l (Q)
} ∑
ID(q)==k

min
ID(p)==k

Ml(p, q),

(5)

where Ml(p, q) is a geometric measure of the feature pair
and is computed as their affinity in the space-time volume,

Ml(p, q) =
∏

z∈{x,y,t}

(
1 −

∣∣blz[p]−blz[q]
∣∣

Dz

)
. (6)

As shown in Figure 2, (blx, bly, blt) refers to its quantized
3D location in the volume, while Dx, Dy, and Dt denote
the number of quantization levels on each of the dimen-
sions, respectively. It is easy to check that for the trivial
case Dx = Dy = Dt = 1, Eq. (3) is recovered from Eq. (5).
In other words, the Pyramid Match Kernel [11] can be
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regarded as a special case of AMK Type II when no spatial
and temporal constraints are enforced.

Mercer kernels and the action volume
Action matching kernels are Mercer kernels It is easy
to check that AMKs Type I areMercer kernels (i.e. the ker-
nel matrix is positive semi-definite (p.s.d.) [31,32]) as long
as proper similarity measures such as χ2, and histogram
intersection are utilized. An important property of AMK
Type II as defined by Eqs. (1), (2), (5) and (6) is that it is
a Mercer kernel. This is clear from the fact that Eq. (6) is
a p.s.d, as well as the fact that Mercer kernels are closed
under positive scaling and summation operations [31] and
the weights wl are always positive. Endowed with a Mer-
cer kernel, the induced convex optimization problem is
guaranteed to produce a unique optimal solution using the
support vectormachine (SVM) classifiers [31]. In practice,
we use the binary/multiclass algorithms of LibSVM [33]
with customized kernels.

The action volume An action is naturally bounded in 3D
space-time, as e.g. illustrated in Figure 1(a) bottom left. In
fact this is a property inherit in the problems regarding
action recognition and retrieval. In a typical recognition
dataset such as KTH [22], where there is only one person
performing an action in a video, the action is bounded by
the size of the frames. One possible scheme is to consider
a local coordinate with its origin fixed to the center of
these features, and to explicitly examine all possible scales
in a manner similarly to that of the Hough voting space. A
simple scheme is instead considered in this paper, where
the action volume is determined by aligning the bounding
boxes detected using a human detector [34]. As a result,
its scale is also implicitly decided.

Sneeze-Cough: a public health surveillance dataset
We describe here the new Sneeze-Cough video dataset
that tailors to the specific challenges and characteristics
of recognizing flu-like behavior symptoms in public areas.
Note written consent on publication and use of the video
data was obtained from each volunteer and the study was
cleared by the Bioinformatics Institute ethics committee
represented by the executive director. This dataset con-
tains 960 color video clips of imitated surveillance video
settings, collected from 20 human subjects (8 females and
12 males) of 20 to 50 years old using a Canon VIXIA HF20
camcorder. A gallery of sample frames are displayed in
Figure 3. The data acquisition process is carried out in an
indoor environment with semi-controlled lighting condi-
tion (sun lights through windows are present in some of
the videos), and the camera is mounted on a tripod mim-
icking the relative height of a typical surveillance camera.
Each clip contains one specific action performed by one
subject in a particular view and pose. Video shots are

normalized at 480 × 290 resolution, with stream rate
of 5 frame per second, each lasts for around 15 sec-
onds. In addition to the two flu-like behaviors, namely
sneeze and cough, six common background action types
are also included: drinking, phone calling, scratching head,
stretching arms, wiping glasses and waving hands. Note
we deliberately cover a spectrum of possible background
action types that are relatively close to our actions of inter-
est. In addition, each human subject performs each action
six times under 2 different poses (standing and walking)
and 3 different views (roughly frontal/left/right). We also
perform horizontal flip on each video to produce an addi-
tional video set of reflective views, which results in a final
set of 1920 videos.

Results and discussion
Throughout the experiments, the following parameters
are used: For AMK Type I and II, the number of code-
words is fixed to K = 1024. By default, χ2 similarity
measure is used for AMK Type I; Meanwhile AMK Type
II employs histogram intersection, together with a hierar-
chical codewords of 4 levels. These two different similarity
measures are utilized here to showcase the flexibility of
incorporating various similarity measures into the pro-
posed AMKs. LibSVM [33] is used with the trade-off
parameter C = 10. To verify that the proposed AMKs are
able to accommodate different local features, two publicly
available local feature detectors & descriptors are consid-
ered, namely HOGHOF (also called Space Time Interest
Point) [22], and cuboid [23].

Accuracy measures For KTH we use the standard accu-
racy measure by averaging the diagonal values from the
row-normalized confusion matrix. For binary classifica-
tion, this becomes TP+TN

ALL
b, which however is problematic

for datasets with imbalanced class distributions such as
Sneeze-Cough: As 3/4 of the Sneeze-Cough examples
belongs to background actions category, and using the
standard accuracy measure, a rate of 75% is reached when
a classifier is biased towards blindly assigning every exam-
ple to background actions. This leads to the utilization of
precision and recall, which are computed by TP

TP+FP and
TP

TP+FN , respectively. We thus adopt a different accuracy
measure of TP

TP+FP+FN for this binary classification task,
which can be regarded as a lower-bounding summary of
the (precision, recall) pair.

KTH The KTH dataset [22] contains 2391 video shots
from 25 actors repeatedly performing 6 different action
types under 4 different background contexts. The actions
include boxing, handclapping, handwaving, jogging, run-
ning, and walking. To facilitate direct comparison, the
same split scheme of [22] is adopted in our experiments,
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Figure 3 Snapshots of Sneeze-Cough action recognition videos. Snapshots of Sneeze-Cough action recognition videos. From left to right
shows eight actions: answer phone call, cough, drink, scratch face, sneeze, stretch arm, wave hand and wipe glasses. From top to bottom shows six
pose-and-view variations: stand-front, stand-left, stand-right, walk-front, walk-left, and walk-right.
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Table 1 Comparisons of recognition accuracies on KTH
dataset

Method Brief description Acc. %

ICPR’04 [22] HOGHOF + SVM 71.7

CVPR’07 [36] cuboid + WX-SVM 91.6

BMVC’09 [35] cuboid + BoW+ χ2 89.1

HOGHOF + BoW + χ2 91.8

ECCV’10 [37] convolutional nets 90.0

In this paper cuboid + BoW + χ2 (baseline) 88.2

cuboid + AMK I Uc S=2 91.7

cuboid + AMK I Ub S=8 93.0

cuboid + AMK I B S=7 92.7

cuboid + AMK II 93.2

HOGHOF + BoW + χ2 (baseline) 88.5

HOGHOF + AMK I Uc S=3 91.1

HOGHOF + AMK I Ub S=27 95.2

HOGHOF + AMK I B S=5 92.3

HOGHOF + AMK II 93.5

Comparisons of recognition accuracies on KTH dataset. Here shorthands of AMK I
and II are used for AMK type I and type II kernels, respectively. Uc (Ub) refers to the
concentric (block) partition scheme in unary extension. B is for binary extension.

where videos from 16 persons are used for training, and
the other 9 persons are retained for testing. Table 1 com-
pares results of our proposed AMKs with reported works.
Our implementation of the two baseline methods (88.2%
for cuboid and 88.5% for HOGHOF) is consistent with
what has been reported in the literature (89.1% [35] for
cuboid and 91.8% [35] for HOGHOF). And the results of
the proposed AMKmethods (with best rate of 93.4% with
cuboid and 94.2% with HOGHOF) are competitive when
comparing to the state-of-the-art approaches.

Sneeze-Cough For the Sneeze-Cough dataset, we use 15
persons for training, and retain the rest 5 persons for
testing.Wewould like to emphasize that this dataset is sig-
nificantly different and is more challenging comparing to
the KTH dataset. First, the actions in this dataset, except
for hand-waving, are usually of short time-span, in con-
trast to actions such as walk or boxing that usually consist
of a good number of repetitive action cycles. Second,
there exist large variations within the sneeze and cough
actions over e.g. different genders, ages, and views. This
is further complicated by the fact that the background
actions commonly seen in public areas (such as phone

Figure 4 Confusion matrices of Sneeze-Cough 8-class recognition. Confusion matrices of Sneeze-Cough 8-class recognition.
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calling, scratching head) are often very similar in appear-
ance to flu-like symptoms.Meanwhile these 6 background
actions by themselves are highly complex and exhibit large
variations as well, as indicated in the sample frames of
Figure 3.
By experimenting with 8-class recognition tasks, confu-

sion matrices are obtained to facilitate our investigation
into the inter- and cross- actions pattern of this new
dataset. Figure 4 presents the confusionmatrices obtained
using baselinemethod (BoW+ χ2) and the proposed AMK
type II kernel. When comparing the confusion matrices
to the counterparts from KTH dataset, Figure 4(a) vs.
Figure 5(a) and Figure 4(b) vs. Figure 5(b), it can be seen
that the two baseline methods perform much worse on
the Sneeze-Cough dataset than on the KTH dataset. This
loss in accuracy suggests that the Sneeze-Cough dataset is
much more challenging than the KTH dataset.
Meanwhile, the actions of sneeze and cough seems to

be more correlated with the subset of actions {call, drink,
scratch}, rather than the rest ones of {stretch, wave, wipe}.
This might due to the fact that for the action subset
{sneeze, cough, call, drink, scratch}, hands are usually
placed near the face;While for {stretch,wave,wipe}, hands
are often placed further away from the face. The gain

in accuracy by adopting the AMK II kernel is also evi-
dent, when we compare the matrices (c) and (a) (or (d)
and (b)) in Figure 5 for the KTH dataset, as well as by
comparing the same two pair of matrices in Figure 4 for
the Sneeze-Cough dataset. For KTH, an improvement of
around five points has been observed for the averaged
diagonal elements; As for Sneeze-Cough, this improve-
ment is around ten points. These observations hold valid
for both features.
Our major interest in this dataset is to recognize flu-

like symptoms (sneeze and cough) from the background
actions. Therefore, binary classification experiments are
conducted to examine the performance of the proposed
AMK kernels, and the results are listed in Table 2. For each
AMK kernel type, in addition to the (precision, recall)
pair, the accuracy measure provides an easy-to-compare
summary of its performance. On average, we can see that
this dataset is rather challenging. The best method merely
reach an accuracy of around 44.4%, which can be partially
explained by the large variations within cough/sneeze over
various genders/ages/views, as well as their similar space-
time appearances to those of the background actions. For
both cuboid and HOGHOF local features, we see signif-
icant improvement in accuracy by using specific AMKs

Figure 5 Confusion matrices of KTH 6-class recognition. Confusion matrices of KTH 6-class recognition.
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Table 2 Comparisons of recognition accuracies on
Sneeze-Cough dataset

Brief description Prec. % Rec. % Acc. %

cuboid + BoW + χ2 (baseline) 49.5 45.0 30.9

cuboid + AMK I Uc S=6 69.5 47.5 39.3

cuboid + AMK I Ub S=27 78.7 47.2 43.4

cuboid + AMK I B S=2 50.0 54.3 35.2

cuboid + AMK II 55.3 62.1 41.3

HOGHOF + BoW + χ2 (baseline) 52.6 50.0 34.4

HOGHOF + AMK I Uc S=3 63.7 48.3 37.9

HOGHOF + AMK I Ub S=27 69.7 40.8 34.6

HOGHOF + AMK I B S=5 60.8 49.2 37.3

HOGHOF + AMK II 58.9 64.4 44.4

Comparisons of recognition accuracies on Sneeze-Cough dataset. Here
shorthands of AMK I and II are used for AMK type I and type II kernels,
respectively. Uc (Ub) refers to the concentric (block) partition scheme in unary
extension. B is for binary extension. Note a different accuracy measure of

TP
TP+FP+FN is used here.

compared to baseline methods. Take cuboid feature for
example, we observe that using the AMK type I kernel
with Ub and S = 27 leads to an increase of accuracy by
12.5 points. Interestingly, although the best results (i.e.,
43.4% vs. 44.4%) are similar for both local features, they
are in fact obtained from different type of AMK kernels.

Conclusion
In this paper, we develop a new family of kernels in
the proposed approach that explicitly integrates the two
important aspects of action local features: space-time lay-
out and BoW representations. Meanwhile, a new public
health action dataset is introduced in this paper, to facil-
itate the study of detecting typical flu-like symptoms in
public areas. This dataset is shown to be significantly
different from and is more challenging than established
datasets such as the KTH dataset. We demonstrate that
our approach, while achieving competitive performance
on the well-studied KTH dataset, produces reasonable
results for this unique and challenging sneeze-cough
dataset.
For ongoing work, we would extend the current

approach to retrieve flu-like behavior symptoms from
video archives, which often contain multiple persons
simultaneously performing a series of actions, often in
crowded environments. In particular, we plan to work
with real surveillance datasets and test correlation of daily
or weekly average sneeze/cough incidence with public
health records of respiratory disease trends over time to
show utility of the approach and if it is following or pre-
ceding reported peaks from hospital or doctor visit-based
reporting systems. We envision that this approach can
also be useful for detection of a variety of emergency

situations triggering respiratory symptoms such as fires,
gas leaks or chemical spills from accidents or even terror-
ist attacks.

Endnotes
aThe dataset is made available at http://web.bii.a-star.

edu.sg/~chengli/FluRecognition.htm.
bTP, TN, FP, and FN refer to True Positive, True

Negative, False Positive and False Negative, respectively.
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