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Abstract 

Living cells display dynamic and complex behaviors. To understand their response and to 

infer novel insights not possible with traditional reductionist approaches, over the last few 

decades various computational modelling methodologies have been developed. In this 

chapter, we focus on modelling the dynamic metabolic response, using linear and non-linear 

ordinary differential equations, of an engineered Escherichia coli MG1655 strain with 

plasmid pJBEI-6409 that produces limonene. We show the systems biology steps involved 

from collecting time-series data of living cells, to dynamic model creation and fitting the 

model with experimental responses using COPASI software. 
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1. Introduction 

The issue of food security has been brought into light in recent years, primarily driven by 

climate change affecting crop yields across the world. The recent coronavirus disease 2019 



(COVID-19) pandemic, rising fuel prices and various political strife between countries 

affecting supply chains magnified the importance of food security especially in land-scarce, 

import-dependent nations (1, 2). The environmental impact of current agricultural methods, 

including destruction of natural habitats and emission of greenhouse gases, has become 

increasingly urgent to address as the Earth’s global temperatures inches towards the 1.5 oC 

warming limit. In view of the above mentioned, but not limited to, concerns, many countries 

have been looking to diversify their food sources, one of which is to investigate alternative 

and cultured food possibilities. These include plant-based meat, lab-grown meat and using 

microbes to as biofactories to produce compounds of interest (3). 

 

(S)-Limonene, hereafter referred to as limonene, is a monoterpene compound with a sweet 

citrusy fragrance. Holding the generally recognized as safe (GRAS) status issued by the US 

Food and Drug Administration, there has been a growing application for it, besides its current 

use as a food, flavoring, and fragrance additive (4). Traditionally, limonene is produced from 

waste orange peel with current market price ranging between $7.92 to $20.15 per kilogram 

(5). However, this approach can be limited both by crop yields and the difficulty of citrus rind 

recycling (4, 5). To address these issues, several groups have engineered E. coli to increase 

limonene and other terpenes yields (6-11), and consequently to decrease their market price. 

 

The precursor to limonene, geranyl diphosphate (GPP), is produced from the condensation of 

isopentenyl pyrophosphate (IPP) and its isomer, dimethylallyl pyrophosphate (DMAPP). 

IPP/DMAPP can be formed from two pathways – the deoxyxyluose phosphate (DXP) and the 

mevalonate (MVA) pathways (Figure 1). While the DXP pathway occurs in E. coli natively, 

it only results in the production of small amounts of terpenes. Engineering of the DXP 

pathway for higher yields of terpenes were met with limitations possibly due to physiological 



pathway regulations in E. coli (11). Therefore, the MVA pathway was engineered to be 

expressed alongside instead (6, 9, 11) (Figure 1). Building on these past works, there have 

been commendable efforts to further increase limonene yields from E. coli, ranging from 

transcriptional tuning (12) to genetically engineering for better ribosome binding sites, 

promoter optimization and utilization of plant, instead of native, ispA gene (13). However, 

these methods primarily target the MVA pathway elements alone and do not consider other 

relevant metabolic pathways, such as upstream glycolysis from a carbon source. Existence of 

bottlenecks and loss of flux are equally important (14) for consideration to maximize 

limonene yields. 

 

Analyses of metabolic bottlenecks and flux distribution can be performed by several 

computational modeling approaches (14). Kinetic models are dynamic models that are based 

on linear and non-linear differential equations governed by the underlying (enzyme) kinetics 

for each reaction in a pathway. They are popularly used to describe dynamic biological 

processes, ranging from metabolic (15), to protein signaling (16, 17), to gene regulatory 

networks (18-20), for systems biology research. For instance, dynamic modelling of TRAIL 

signaling using time-series data revealed PKC as a target to overcome TRAIL resistance in 

cancer (21). The same method also helped identify RIP1 as a target to suppress but not 

abolish proinflammatory signaling (22). These examples, thus, highlight the huge potential of 

dynamic models built from time-series experimental data to uncover important insights in 

complex biological networks. 

 

In the context of metabolic network modelling, the rates of change of metabolites in the 

network are represented by deterministic ordinary differential equations (ODEs). The rate of 

each reaction step in the network is defined by a rate law that describes the enzyme’s 



kinetics, for instance the Michaelis-Menten equation (or mass-action kinetics for protein 

signaling reactions). Defining the ODE of metabolite A in terms of its associated rate laws, 

we obtain the generalized equation [1]: 

 𝑑𝐴

𝑑𝑡
=  ∑ 𝑠𝑖

𝑖

∙ 𝑣𝑖 
[1] 

where 𝑠𝑖 represents the stoichiometric coefficient of species A in reaction 𝑖 and 𝑣𝑖 denotes the 

rate law of reaction 𝑖. Reactions that produce and consume A will have a positive and 

negative stoichiometric coefficient respectively. All the species in the network are thus 

represented by equation [1]. An example is shown in Figure 2. From the network topology 

above (Figure 1), BPG is produced and consumed by the GDH and PGK reactions 

respectively, with a stoichiometric coefficient of 1 in both. These are thus represented by the 

‘+’ and ‘-’ signs in its ODE, respectively. Michaelis-Menten kinetics were used for both 

GDH and PGK. 

 

Here, we describe the experimental methods to collect time-series data, forming the network 

topology and kinetic model construction using COmplex PAthway SImulator (COPASI) (23). 

Finally, we will also discuss how the time-series data is fed into the model for parameter 

estimations, further model tuning and model validation. 

 

2. Materials 

2.1 Cell Culture 

1. MG1655 E. coli strain with plasmid pJBEI-6409 obtained from Taek Soon Lee 

(Addgene plasmid #47048) (6). 

2. Pre-pre-culture Luria-Bertani medium: 10 g/L tryptone, 5 g/L yeast extract, 10 g/L 

NaCl, and 30 µg/mL chloramphenicol.  



3. Pre-culture and culture M9 medium: 12.7 g/L Na2HPO4.7H2O, 3.1 g/L KH2PO4, 1 g/L 

NH4Cl, 0.5 g/L NaCl, 0.25 g/L MgSO4.7H2O, 15 mg/L CaCl2.2H2O, 8.1 mg/L FeCl3, 

0.89 mg/L MnCl2.4H2O, 1.7 mg/L ZnCl2, 0.34 mg/L CuCl2, 0.6 mg/L CoCl2.6H2O, 

0.51 mg/L Na2MoO4, 10 g/L Glucose. 

4. Microplate reader at 600 nm.  

5. Inducer: 25 μM isopropyl β-d-1-thiogalactopyranoside (IPTG). 

6. Dodecane: 10% of culture volume. 

 

2.2 Sample Preparation 

1. Polyamide membrane filter with 0.2 µm pore size. 

2. Filtration manifold with vacuum.  

3. Wash solution: 12.7 g/L Na2HPO4.7H2O, 3.1 g/L KH2PO4, 1 g/L NH4Cl, 0.5 g/L 

NaCl. 

4. Aluminium foil: 7 cm x 7 cm. 

5. Liquid nitrogen. 

6. Centrifuge. 

7. Polyamide filters with 0.45 µm pore size. 

8. Oven at 80 oC.  

9. Weighing Balance.  

 

2.3 Sample Extraction 

1. Acetonitrile, methanol, and water (4:4:2). 

2. Vortex mixer. 

3. Sonicator bath.  

4. Ice. 



5. Internal standard mixture: 50 µg/mL mevalonic acid-d3 (MVA-d3) and 10 µg/mL 

thymolphthalein monophosphate (TMP).  

6. Centrifugal vacuum concentrator. 

7. Methanol: 10 mM ammonium hydroxide (7:3). 

 

2.4 Sample Analysis 

2.4.1  Intracellular Metabolites 

1. Interface an Agilent 6230 time of flight-mass spectrometer (TOF-MS) and a Dual 

Agilent Jet Stream (AJS) ion source with an Agilent ultra-performance liquid 

chromatography (UPLC) 1290 system and a Waters Acquity UPLC BEH C18 (2.1 x 

150 mm, 1.7 µm) column with a VanGuard pre-column (2.1 x 5 mm).  

2. Use a dual mobile phase system - mobile phase A: 5 mM ammonium formate in water 

(pH 9.5) and mobile phase B: 5 mM ammonium formate (pH 9.5) in acetonitrile: 

water (9:1). 

3. Calibration mixtures containing different concentrations of intracellular intermediates 

are used to construct calibration curves: DHAP (DHAP + GAP pool) – 0.04 to 5 

µg/mL; DXP – 0.04 to 10 µg/mL; F6P (F6P + G6P pool) – 0.04 to 10 µg/mL; F1,6BP 

– 0.04 to 6 µg/mL; MVA – 0.04 to 10 µg/mL; R5P (R5P + Ru5P + X5P pool); 

Pyruvate – 0.04 to 1.5 µg/mL; MVAP – 0.01 to 0.3 µg/mL; GPP – 0.05 to 1.5 µg/mL; 

FPP – 0.05 to 1.5 µg/mL. To each 100 µL calibration mixture, add 10 µL of internal 

standard mixture. Calibration curves are used to determine linearity and the 

concentration of each compound in the prepared samples.  

4. Software for metabolite quantitation (e.g., Agilent Masshunter Workstation 

Quantitative Analysis for TOF). 

2.4.2  Extracellular Metabolites 



1. Interface an Agilent 1200 high performance liquid chromatography (HPLC) system 

with a Bio-rad Aminex HPX-87H column (300 x 7.8 mm) and 1260 Infinity II 

Refractive Index Detector (RID). 

2. Prepare 0.01 N sulphuric acid as mobile phase. 

3. Use calibration mixtures with different concentrations of extracellular metabolites to 

construct calibration curves: Glucose – 0.5 to 80 g/L; Lactic acid – 0.125 to 8 g/L; 

Acetic acid – 0.125 to 80 g/L; Ethanol – 0.5 to 80 g/L. Calibration curves are used to 

establish linearity and the concentration of each extracellular metabolite in the 

prepared samples.  

4. Software for metabolite quantitation. 

2.4.3  Secreted Limonene 

1. Equip an Agilent 7890B gas chromatography mass spectrometry (GC-MS) system 

with a DB-5 ms column.  

2. Calibration standards for limonene prepared in ethyl acetate from 0.05 µg/mL to 10 

µg/mL. Use calibration curves to determine linearity and the concentration of 

limonene in the dodecane extracts from samples.  

3. Software for limonene quantitation. 

 

3. Methods 

An overview of the experimental protocol is presented in Figure 3. The protocol has been 

divided into five parts: production of bacterial culture; harvesting of samples; preparation of 

samples; instrumental analysis and mass spectrometry; and data analysis. 

 

3.1 Production of bacterial culture 



Limonene bacterial strains are grown as 50 mL cell cultures in 250 mL flasks and induced 

with IPTG. Each flask is sacrificed in duplicates from 2 h, 3 h, 6 h, and 7 h post-IPTG 

induction to determine intracellular and extracellular metabolite concentrations.  

1. For pre-pre-culture, select a single colony and inoculate in 5 mL Luria-Bertani 

medium and chloramphenicol overnight at 37 oC and 220 rpm. 

2. For pre-culture, wash cell pellet from pre-pre-culture and re-suspend in 50 mL M9 

medium, leave overnight at 30 oC and 220 rpm.  

3. For culture, add 100 µL of pre-cultures to 50 mL M9 medium in 250 mL flasks. 

Incubate at 30 oC and 220 rpm.  

4. Upon reaching optical density of 1 at 600 nm, add IPTG. 

5. Add 5 mL dodecane to cell cultures.  

6. Leave at 30 oC and 220 rpm.  

7. Sacrifice flasks over time-points at 2 h, 3 h, 6 h, and 7 h post-IPTG induction. 

 

3.2 Harvesting of samples  

3.2.1  Intracellular metabolites 

1. Subject 10 mL of cell cultures from various time-points to fast filtration. 

2. Wash cell pellet left on polyamide membrane with 5 mL wash solution. 

3. Place the polyamide membrane onto an aluminium foil and fold into half prior to 

quenching in liquid nitrogen.  

4. Remove from liquid nitrogen and store at -80 oC prior to metabolite extraction. 

3.2.2  Extracellular metabolites and secreted limonene 

1. Centrifuge 50 mL cell cultures from various time-points for 10 mins at 3000 rpm. 

2. Remove dodecane layer containing secreted limonene and store at -80 oC prior to GC-

MS analysis.  



3. Place collected supernatant samples at -80 oC prior to HPLC-RID analysis for 

extracellular metabolites.  

4. Dry cell pellets in oven overnight prior to weighing. 

 

3.3 Preparation of samples  

3.3.1  Intracellular metabolites 

1. Remove membranes from aluminum foil and place into 5 mL extraction solvent 

consisting of methanol, acetonitrile, and water.  

2. Vortex for 1 min. 

3. Sonicate for 3 mins, 3 times, placing in ice prior to each sonication. 

4. Place extracts into glass tubes and spike with 20 µL internal standards mixture. 

5. Remove solvents using vacuum concentrator and reconstitute with 200 µL methanol 

and 10 mM ammonium hydroxide mixture. Dilute samples by 10 times and 100 times, 

as necessary. 

3.3.2  Extracellular metabolites and secreted limonene 

1. Filter 1 mL of supernatant sample using polyamide filter prior to HPLC-RID analysis. 

2. Dilute limonene samples using ethyl acetate by 10 or 100 times prior to GC-MS 

quantitative analysis. 

 

3.4 Instrumental analysis and mass spectrometry 

3.4.1  Intracellular metabolites 

1. For each run, inject 2 µL of sample. Start with 100% mobile phase A from 0-3.5 min 

with 0.1 mL/min flow rate to 100% mobile phase B at 12 min and hold for 8 min with 

increased flow rate to 0.5 mL/min. At 20 min, recalibrate system back to 100% 



mobile phase A for 5 min and hold for another 5 min. Keep column temperature 

constant at 35 oC.  

2. Negative electrospray ionisation is used with the following TOF settings: Gas 

temperature, 325 °C; Gas flow, 11 L/min; Nebuliser pressure, 35 psi; Sheath gas 

temperature, 375 °C; Sheath gas flow, 11 L/min; Vcap voltage, 3500 V; Nozzle 

voltage, 500 V; Skimmer, 65; OctopoleRFPeak, 750; Scan rate, 2 spectra/s. 

Fragmentor voltage varied is throughout each 35 min sample analysis: 2 – 7.5 min, 

140 V; 7.5 – 15 min, 100 V, 140 V and 150 V. UPLC flow diversions are as follows: 

0 – 2 min to waste, 2 – 15 min to TOF-MS, and 15 – 35 min to waste. 

3.4.2  Extracellular metabolites 

1. Set RID temperature at 30 oC with positive polarity.  

2. For each run, inject 5 µL of sample with isocratic gradient and 0.6 mL/min flow rate 

for 28 min. Set column temperature at 35 oC.   

3.4.3  Secreted limonene 

1. Equip an Agilent 7890B GC-MS system with a DB-5 ms column.  

2. For each run, use a 10:1 split ratio with 10 mL/ min split flow and an injection of 1 

µL. Use a GC oven temperature program of 40 oC for 3 min, followed by a 10 oC/min 

ramp to 100 oC and another 60 oC/min ramp to 220 oC with a hold time of 2 min. 

Injector and MS transfer line temperatures are 250 oC and 280 oC, respectively.   

3. Operate the MS in selected ion-monitoring (SIM) mode using ions of m/z 136, 68 and 

93, representing the molecular ion and two abundant fragmental ions of limonene. 

 

3.5 Data analysis 

1. Execute the quantitation of metabolites with appropriate dilutions as necessary with 

calibration curves obtained from metabolite standards. 



 

3.6 COPASI software and execution 

The construction and analysis of kinetic models can be done via the open-source and stand-

alone program COPASI (23). COPASI (https://copasi.org) is available both in a graphical 

user interface (CopasiUI) and command line version (CopasiSE). Basico is also available as a 

simplified interface to using COPASI from Python. 

3.6.1  Model construction 

1. Begin first by defining the model’s units under the Model tab. Set “Quantity Unit” 

and “Volume Unit” to be the same as the metabolite concentration unit used in the 

time-series data. Thus, if mol/l is used, set “mol” and “l” respectively. Keep “Time 

Unit” no longer than the minute scale (see Note 2). 

2. Under Model → Biochemical → Compartments, create the compartment(s) to 

describe where the reactions would be taking place. For model simplicity, we would 

create just one compartment, using COPASI’s default settings of 3D dimensionality 

and fixed simulation type. 

3. Under Reactions, add the reactions that occur in the metabolic network. Specify the 

reaction name and its chemical equation. Use equal sign (=) and “->” to indicate 

reversible and irreversible reaction respectively. Alternatively, use the reversible 

checkbox to toggle the reaction reversibility. For reactions that involve stoichiometric 

coefficient greater than 1, for instance AtoB reaction of 2AcCoA = AtAcCoA + CoA, 

write the reaction equation as shown in Figure 4A. If “2AcCoA” or “2*AcCoA” (no 

spaces) were used instead, COPASI will treat it as a separate species from AcCoA. 

4. Assign the appropriate rate law to describe the reaction kinetics from the drop-down 

menu. Note that rate laws that match the reaction characteristics (reversibility and the 

same number of substrates and/or products) would only appear for selection. COPASI 

https://copasi.org/


has a few predefined rate laws to choose from, but a user-defined rate law can also be 

created by clicking on the “+” sign (Figure 4A). 

5. In the window that appears next, enter the rate law formula in the Formula box. If the 

equation is syntactically correct, the button next to the box will become white and 

clickable to view the equation in a more visually understandable manner (Figure 4B, 

top). The button will appear grey and unclickable otherwise (Figure 4B, bottom; also 

see Note 1). Additionally, indicate if the rate law is for a “reversible”, “irreversible” 

or “general” reaction below. 

6. While the rate law is being entered, COPASI automatically parse and extract the 

variables as the default “Parameter” type. From the dropdown under Description, 

select if a variable is a “Substrate”, “Product”, or “Modifier” (reaction activator or 

inhibitor), where necessary. 

7. When defining the new rate law is complete, click “Commit”, return to the reaction, 

and select it from the dropdown menu. Perform mapping of variables between the 

reaction and formula variables (Figure 4C). 

8. As the reactions are created, species in the network will be automatically populated 

under the Species tab. 

 

3.6.2  Parameter estimation 

The reaction parameters such as Vmax and KM can be obtained from in vitro studies of the 

enzyme kinetics. However, such information may not be available for some enzymes. In 

addition, in vitro conditions may not necessarily reflect the conditions in living cells or 

systems (24). In such cases, parameter values would need to be estimated based on time-

series experimental data relevant to the metabolic network being built. 



1. Save experimental time course results in tab- or comma-delimited plain text file 

format (.csv, .tsv, .txt etc.), having the column names in the first row. 

2. Under Tasks → Parameter Estimation, import the experimental data and correctly 

inform COPASI the separator that should be used to automatically parse in the table 

of values (Figure 5A). 

3. Select “Time Course” as the Experiment Type and indicate how each column of the 

input data associates with model elements, either “Time”, “independent”, “dependent” 

or “ignored” (default). Upon selecting “dependent”, a pop-up window appears 

prompting you to specify what model element the column maps to. Navigate to 

Species → Transient Concentrations and select for the correct mapping (Figure 5B). 

4. Choose either mean or mean square as the “Weight Method” as either ensures that all 

data columns contribute in the same order of magnitude towards the error of fit 

regardless of the size of their numerical values (Figure 5A) (25). 

5. Save the setup of the imported experimental data by clicking “OK”. 

6. At the main screen of Parameter Estimation, select for which parameters to perform 

estimation for. The start value, lower and upper bounds can be informed by 

previously reported parameter values of the enzyme, if available. 

7. Select for the method to use for estimation. Typically, the global optimization 

method, genetic algorithm, is used. 

8. Set the number of generations and population size. While higher numbers would 

increase the probability of reaching global minimum, 1000 generations and a 

population size of 300 is a good start, balancing for both optimized solutions as well 

as time-intensiveness to run the task. 

9. Choose where to save the parameter estimation report file on your computer by 

clicking on the “Report” button and selecting the path and file name. 



10. Under Output Assistant, select to create Progress of Fit and Parameter Estimation 

Result plots. The former will inform us if there is improvement in the fit while the 

estimation task is still running (Figure 6A), and the latter will let us know how the 

simulations compare to the experimental data after parameter values has been 

estimated (Figure 6B). 

 

The details (kinetic equations and parameter values) of our fitted model can be found in the 

following GitHub repository: https://github.com/heeyanting93/CBioOmics_COPASI. As 

parameter estimation runs can take up to hours to complete and CopasiUI does not allow 

multiple application instances (other than through the command line open -n CopasiUI.app 

call), we have also included in the repository a Python script run_parameter_estimation.py 

utilizing Basico to run parameter estimation and can be adapted to one’s own use. This way, 

the CopasiUI remains available to build and test out other model variations. The script also 

reads the output parameter estimation text file to plot the progress of fit curve and simulation 

vs measurements plot. 

3.6.3  Model testing 

Besides the time-series data from the wildtype strain, further experimental time-series data 

from mutant strains should be obtained where parts of the metabolic network are suppressed 

(knockdown/out). These additional datasets would enable us to assess if our built model is 

valid and reflects the system not just under wildtype conditions. 

 

To perform in silico knockouts, set the Vmax of a reaction step of interest to zero. Run a time 

course simulation and compare if the simulation results agree with the experimental data. 

Ideally, such model testing should be tested at multiple parts of the network. 

3.6.4  Model validation 

https://github.com/heeyanting93/CBioOmics_COPASI


After the model has been tested, subsequent perturbations to the network can be done to 

predict how to improve limonene yield. For instance, looking at the network topology in 

Figure 1, reducing the flux to lactic acid and ethanol by knocking down ADH and LDH 

enzymes look likely to increase limonene production (Figure 7). Using these predictions, we 

can then perform the necessary manipulation in the laboratory to validate if these predictions 

hold true. 

 

4. Notes 

1. COPASI considers variables in rate law equations that start with a number as 

syntactically incorrect, thus 3PG is written as PG3 instead. 

2. Reaction rate (Vmax) values will get very large if defined in terms of hours, for example, 

and might pose an issue when trying to narrow the upper and lower bounds for parameter 

estimation later. 

 

Summary/Conclusion 

This work shows the generation of time-series metabolomics data from an engineered 

limonene-producing bacterial strain that can be used to create a dynamic model. Bottlenecks, 

such as the loss of flux or lack of co-factors, in the validated dynamic model can then be 

studied in silico to enhance limonene yield. This approach to enhance the yield of a desired 

product can also be applied to other engineered microbes.  
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Figure Captions 

Figure 1: Schematic of different pathways involved in limonene production in E. coli 

engineered with the mevalonate (MVA) pathway. Cofactor consumption is represented by 

https://doi.org/10.1007/978-3-642-59735-0_15


curved arrows. Intermediates: Glcex, glucose extracellular; Glc, glucose; G6P, glucose-6-

phosphate; 6PG, 6-phosphogluconate; X5P, xylulose-5-phosphate; Ru5P, ribulose-5-

phosphate; R5P, ribose-5-phosphate; F6P, fructose-6-phosphate; F16BP, fructose-1,6-

biphosphate; GAP, glyceraldehyde-3-phosphate; BPG, 1,3-bisphosphoglycerate; 3PG, 3-

phosphoglycerate; PEP, phosphoenolpyruvate; PYR, pyruvate; DXP, 1-deoxy-D-xylulose-5-

phosphate; Vit B6, flux to vitamin B6 pathway; MEP, 2-C-methylerythritol-4-phosphate; 

CDPME, 4-diphosphocytidyl-2-C-methylerythritol; CDPMEP, 4-diphosphocytidyl-2-C-

methylerythritol-2-phosphate; MEcPP, 2-C-Methylerythritol-2,4-cyclodiphosphate; HMBPP, 

hydroxymethylbutenyl 4-diphosphate; IPP, isopentenyl diphosphate; DMAPP, dimethylallyl 

diphosphate; GPP, geranyl diphosphate; FPP, farnesyl diphosphate; LIM, limonene; LIMex, 

limonene extracellular; AcCoA, acetyl coenzyme A; AtAcCoA, acetoacetyl-CoA; HMGCoA, 

hydroxymethylglutaryl-CoA; MVA, mevalonate; MVAP, 5-phosphomevalonate; MVAPP, 5-

diphosphomevalonate; ACE, acetic acid; ACEex, acetic acid extracellular; ETH, ethanol; 

ETHex, ethanol extracellular; LAC, lactic acid; LACex, lactic acid extracellular; AKG, α-

ketoglutarate; SucCoA, succinyl CoA; SUC, succinate; SUCex, succinate extracellular; 

FUM, fumarate; OAA, oxaloacetate. Enzymes: PTS, phosphotransferase system; HK, 

hexokinase; G6PDH, lumped reactions of glucose-6-phosphate dehydrogenase and 6-

phosphogluconolactonase; PGDH, 6-phosphogluconate dehydrogenase; Tkb, transketolase; 

PGI, phosphoglucose isomerase; PFK, phosphofructokinase; FBA, fructose-1,6-biphosphate 

aldolase; GDH, glutamate dehydrogenase; PGK, phosphoglycerate kinase; ENO, enolase; 

PYK, pyruvate kinase; DXS, DXP synthase; DXR, DXP reductase; ISPD, CDPME synthase; 

ISPE, CDPME kinase; ISPF, MEcPP synthase; ISPG, HMBPP synthase; ISPH, HMBPP 

reductase; IDI, isopentenyl diphosphate isomerase; ISPA, farnesyl diphosphate synthase; LS, 

limonene synthase; PDH, pyruvate dehydrogenase; AtoB, acetyl-CoA acetyltransferase; 

HMGS, HMGCoA synthase; HMGR, HMGCoA reductase; MK, mevalonate kinase; PMK; 



phosphomevalonate kinase; PMD, diphosphate mevalonate decarboxylase; LDH, lactate 

dehydrogenase; PoxB, pyruvate oxidase; PCK, phosphoenolpyruvate carboxykinase; PPC, 

phosphoenolpyruvate carboxylase; ACS, acetyl-CoA synthetase; PTACK, lumped reactions 

of phosphate acetyltransferase and acetate kinase; ALDHB, aldehyde dehydrogenase B; 

ALDH, aldehyde dehydrogenase; ADH, alcohol dehydrogenase; CSICD, lumped enzymatic 

reactions of citrate synthase, aconitate hydratase A, aconitate hydratase B and isocitrate 

dehydrogenase; AKGDH, α-ketoglutarate dehydrogenase; SCS, succinyl-CoA synthetase; 

FRD, fumarate reductase; MDH, malate dehydrogenase. 

 

Figure 2: ODE of BPG, which is produced from GAP by the GDH enzyme and later 

converted into PG3 by PGK. 3PG is written here as PG3 instead (see Note 1). Kinetic 

parameters, Vmax of forward (Vf) and reverse (Vr) reaction, and KM belong to their respective 

enzyme as denoted by the parentheses as either (GDH) or (PGK). 

 

Figure 3: Workflow of generating time-series metabolomics data. 

Figure 4: Model construction. (A) Adding reaction to the model. (B) Adding user-defined 

rate laws. Top and bottom show syntactically correct and incorrect (due to a missing closing 

bracket) mathematical formula. (C) Performing mapping of variables between the reaction 

and rate law variables. 

 

Figure 5: Setting up experimental data for parameter estimation. (A) Loading in the 

experimental data text file. (B) Mapping input data columns to model species. 

 

Figure 6: Output from a parameter estimation run. (A) Progress of fit graph from running 

COPASI’s parameter estimation. (B) Parameter estimation result. For each species, the 



simulation result (line) is plotted along with the experimental data (points with standard 

deviation). 

 

Figure 7: In silico limonene simulations for four knockout conditions (ISPG KO, ADH KO, 

ALDH KO, LDH KO), where WT refers to the engineered Escherichia coli MG1655 strain 

with plasmid pJBEI-6409. The results show that ALDH KO produces the best enhancement 

of limonene yields. 


