
Journal of Cryptographic Engineering

Improved Algebraic Attacks on Lightweight Block Ciphers
--Manuscript Draft--

Manuscript Number:

Full Title: Improved Algebraic Attacks on Lightweight Block Ciphers

Article Type: Regular Paper

Corresponding Author: Duc-Phong Le
University of New Brunswick
Singapore, N.A CANADA

Corresponding Author Secondary
Information:

Corresponding Author's Institution: University of New Brunswick

Corresponding Author's Secondary
Institution:

First Author: Sze Ling Yeo

First Author Secondary Information:

Order of Authors: Sze Ling Yeo

Duc-Phong Le

Khoongming Khoo

Order of Authors Secondary Information:

Funding Information:

Abstract: This paper proposes improved algebraic attacks that are effective for lightweight block
ciphers. Concretely, we propose a new framework that leverages on algebraic
preprocessing as well as modern SAT solvers to perform algebraic cryptanalysis on
block ciphers. By combining with chosen ciphertext attacks, we show that our
framework can be applied to lightweight block ciphers that exhibit a nice differential
trail. In particular, we demonstrate our techniques by performing algebraic
cryptanalysis on both the Present cipher and the Simon ciphers. For the Present
cipher, we successfully solved up to 9 rounds with at most 32 key bits fixed and 8
chosen ciphertexts. On the other hand, for the Simon cipher, we tested our method on
Simon-32/64 and Simon-64/128. For these two versions, our attack can solve up to 13
rounds with only 8 chosen ciphertexts by fixing 4 and 6 key bits for Simon-32/64 and
Simon-64/128, respectively. Further, by considering a class of weak keys, we can
extend our attacks to 16 rounds. As far as we are aware, these are the best algebraic
attacks on these ciphers in the literature.

Suggested Reviewers:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

Journal of Cryptographic Engineering manuscript No.
(will be inserted by the editor)

Improved Algebraic Attacks on Lightweight Block Ciphers

Sze Ling Yeo · Duc-Phong Le · Khoong Ming Khoo

the date of receipt and acceptance should be inserted later

Abstract This paper proposes improved algebraic attacks that are effective for lightweight block
ciphers. Concretely, we propose a new framework that leverages on algebraic preprocessing as well
as modern SAT solvers to perform algebraic cryptanalysis on block ciphers. By combining with
chosen ciphertext attacks, we show that our framework can be applied to lightweight block ciphers
that exhibit a nice differential trail. In particular, we demonstrate our techniques by performing
algebraic cryptanalysis on both the Present cipher and the Simon ciphers. For the Present cipher,
we successfully solved up to 9 rounds with at most 32 key bits fixed and 8 chosen ciphertexts. On
the other hand, for the Simon cipher, we tested our method on Simon-32/64 and Simon-64/128.
For these two versions, our attack can solve up to 13 rounds with only 8 chosen ciphertexts by
fixing 4 and 6 key bits for Simon-32/64 and Simon-64/128, respectively. Further, by considering a
class of weak keys, we can extend our attacks to 16 rounds. As far as we are aware, these are the
best algebraic attacks on these ciphers in the literature.

Keywords Algebraic Attacks · SAT solvers · Lightweight block ciphers · Simon · Present

1 Introduction

With the proliferation of low-powered devices such as smart cards, sensors and a booming IoT
industry, the need for lightweight cryptography to protect the data stored on such devices becomes
increasingly important. As such, different proposals have been put forward in recent years to design
efficient and lightweight cryptographic primitives. These primitives are typically built from simple
operations resulting in low latency and gate counts. Examples of lightweight stream ciphers include
Grain [27] and Trivium [10], while Present [7] and Simon [3] are some well-known lightweight block
cipher designs.

Even though an important goal of lightweight cryptography is to offer efficient implementations
with limited computational resources, its core objective to provide security needs to be maintained,
that is, the scheme should, at the minimum, resist all known attacks. At present, there are two main
classes of attacks on block ciphers, namely, statistical approaches like differential cryptanalysis [5]

S-L. Yeo
Institute for Infocomm Research, 1 Fusionopolis Way, Singapore, 138632.
E-mail: slyeo@i2r.a-star.edu.sg

D-P. Le
Canadian Institute for Cybersecurity, UNB, NRC building, 46 Dineen Drive, Fredericton, Canada.
E-mail: le.duc.phong@unb.ca

K.M. Khoo
DSO National Laboratories, 12 Science Park Drive, Singapore, 118225.
E-mail: kkhoongm@dso.org.sg

Manuscript Click here to
access/download;Manuscript;Practical_algebraic_cryptanalysis

Click here to view linked References

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

https://www.editorialmanager.com/jcen/download.aspx?id=26277&guid=58a89329-979e-4b8c-94f5-d29950cb9bc3&scheme=1
https://www.editorialmanager.com/jcen/download.aspx?id=26277&guid=58a89329-979e-4b8c-94f5-d29950cb9bc3&scheme=1
https://www.editorialmanager.com/jcen/viewRCResults.aspx?pdf=1&docID=1142&rev=0&fileID=26277&msid=c11dc85d-ca34-40e0-8604-a3eb2190b21a

2 S-L. Yeo and al.

and linear cryptanalysis [29], as well as algebraic-based attacks [14,30]. The former is much better
understood and good block cipher designs will be built to resist against such attacks. Typically,
one seeks for non-trivial relationships among the plaintexts and ciphertexts. Such relationships
are then used to distinguish between a random key and a correct key. A large amount of data
is often required for this distinguishing property to be feasible. As such, good cipher designs can
resist such attacks by ensuring that the amount of data required to produce the distinguishing
relationships is beyond the available data.

On the other hand, algebraic cryptanalysis is more deterministic in the sense that it does not
depend on any statistical property. Moreover, it generally requires fewer data and the complexity
relies on the complexity of algebraic solving techniques to solve such systems. Algebraic attacks
have been shown to be useful to break some stream ciphers such as Toyocrypt [15] and Crypto-1
[16]. However, as block cipher designs tend to involve a high degree of nonlinearity, they tend to
be more resistant to algebraic attacks. Nonetheless, with better algebraic representations of the
ciphers and new breakthroughs in algebraic solving methods, algebraic attacks on block ciphers
are becoming more feasible [11,25,38].

This paper focuses on improving the state-of-the-art of algebraic cryptanalysis on lightweight
block ciphers. Briefly, algebraic cryptanalysis comprises the following steps. First, given a known
plaintext/ciphertext pair, one constructs a system of polynomial equations to relate the ciphertext
with the plaintext in terms of the unknown key variables and possibly some intermediate variables.
In general, there is a trade-off between the degree of the polynomials involved and the number
of intermediate variables required. Typically, one often works with quadratic equations. Next, in
order to find the unknown key bits, one will need to solve this system of equations. There are
various approaches to solve a system of boolean polynomial equations, including ElimLin [14,19],
XL and its generalizations [12,18,17], Gröbner basis algorithms [9,23,24], the characteristic set
algorithm (CSA for short) [25,28,38] as well as by SAT solvers [2,37]. Each of these methods has
its own merits and shortcomings and its efficiency is dependent on the structure of the system
involved. For instance, Gröbner basis algorithms work better for dense systems while CSA and
SAT solvers are more effective on sparse systems.

In this work, we seek to convert an algebraic system of polynomials with certain nice char-
acteristics into a system that facilitates the solving process via modern SAT solvers. First, we
present an ElimLin-SAT framework to carry out algebraic attacks on lightweight block ciphers.
Concretely, one first finds a set of short linear equations by the ElimLin approach. One then adds
this set of linear equations to the original set, thereby creating more equations without increasing
the number of variables. Finally, this set is then converted into CNF clauses and fed into a modern
SAT solver. In terms of algebraic cryptanalysis, we show how one can construct good differential
trails such that plaintexts satisfying such trails can generate a large number of linear equations
via ElimLin.

To demonstrate our techniques, we tested on two well-known lightweight block ciphers, the
Simon cipher and the Present cipher. In each case, we identified good differential trails to choose
the plaintext/ciphertext pairs. We experimentally carried out the attacks using random keys.
Without fixing any key bits, we were able to break 7 rounds of the Present cipher and 12 rounds
of both Simon-32/64 and Simon-64/128 by using not more than 12 plaintext/ciphertext pairs. By
fixing up to 32 key bits, we further improved our attack to break 9 rounds of Present cipher. Our
attack on Simon can be extended to 13 rounds when not more than 6 key bits were fixed. Moreover,
by considering a class of weak keys, our attacks improved to 15 and 16 rounds for Simon-32/64
and Simon-64/128, respectively.

Next, we proposed some enhancements to the ElimLin-SAT approach. To this end, we intro-
duced higher order differentials and show that more linear relations can be generated from such
differentials. By adding in higher degree equations representing the differential equations among
a subspace of plaintexts, we show that we can now break 16 rounds of Simon-32/64 for a class
of weak keys and with only 8 chosen plaintexts. To our best knowledge, our attacks surpass the
existing results of algebraic cryptanalysis on both Simon and Present ciphers.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Improved Algebraic Attacks on Lightweight Block Ciphers 3

This paper is structured in the following way. In the next section, we recall the overall frame-
work of algebraic cryptanalysis and review two main approaches, namely ElimLin and SAT solver
techniques. In addition, we discuss some existing approaches that are closely related to our work.
In Section 3, we present our improved algebraic technique by combining ElimLin with SAT solvers.
We then provide our experimental results for Simon cipher and Present cipher in the following two
sections. In Section 6, we investigate the linear equations that arise from the ElimLin process on
the Simon cipher. By introducing the differential representation of two plaintexts, we improve our
attack on Simon-32/64 in Section 7. Finally, we wrap up our work with some concluding remarks
and suggestions for future work.

2 Preliminaries and related work

2.1 Solving algebraic equations via ElimLin and SAT solvers

Let S = {f1, . . . , fm} be a set of m polynomials over the binary field F = GF (2) in n variables
x1, x2, . . . , xn. Our goal is to find some y1, . . . , yn ∈ F such that fi(y1, . . . , yn) = 0 for all i =
1, 2, . . . ,m. For simplicity and for applications to cryptography, we may assume that each of the
polynomials fi has degree at most 2. Here, recall that we have x2i = xi for all i = 1, . . . , n.

2.1.1 The ElimLin process

The ElimLin algorithm was first formally introduced by Courtois in [14] to solve the Data En-
cryption Standard (DES) and subsequently revisited in [19]. This simple technique involves the
following steps:

– Find all the linear polynomials in the vector space spanned by the fi’s. One way to do this is
to represent the coefficients of the polynomials in a matrix with respect to some arrangement
of the monomials such that the linear and constant terms are placed at the end. By finding
the echelon form of this matrix via Gaussian elimination, one can then find all the linear
polynomials in the vector space.

– For each of the linear polynomials L, let x be one of its variables and write L = x + L0.
Substitute x as L0 into all the polynomials to eliminate x from the system.

– Repeat this procedure until the system is solved or no more linear polynomials can be found.

Essentially, the ElimLin algorithm successively eliminates variables from the system via linear
equations. Thus, a sufficient number of linear polynomials must be generated in the whole process.
Otherwise, one may need to use other solving methods to solve the resulting system of equations
(with less variables since some variables may have been eliminated). In fact, the ElimLin procedure
has been incorporated into other polynomial solving techniques such as the F4 and F5 Gröbner
basis algorithms [23,24], the characteristic set algorithm [38] as well as some SAT solvers (such as
minisat in the preprocessing stage).

2.1.2 SAT solvers

Let us first briefly review the SAT problem and SAT solving techniques.

The satisfiability problem (or SAT for short) is one of the classical NP complete problems that
seeks to determine if a boolean formula has a satisfiability assignment. With its wide and varied
range of applications, such as in automated testing and artificial intelligence, many efficient SAT
solvers have been implemented to solve SAT problems involving large numbers of variables and
constraints. Typically, the input propositional statement is represented in its conjunctive normal
form (CNF) or a conjunction of clauses. One therefore seeks for a variable assignment that results
in all clauses being true or shows that such an assignment does not exist.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

4 S-L. Yeo and al.

Most modern SAT solvers follow the DPLL approach [21,20] that performs a depth first search
on the variables with unit propagation. Some innovative features that have been incorporated to
help speed up the SAT solvers include good branching heuristics, lazy data structures such as the
use of watch literals, non-chronological backtracking, random restarts as well as conflict-driven
clause learning. In particular, various conflict driven clause learning techniques have resulted in
marked improvements in the progress of SAT solvers. Essentially, these techniques seek to construct
useful clauses from conflicts encountered in the solving process. These learned clauses are added
to the system to avoid choosing branches that will lead to the same conflict.

Some well-known modern SAT solvers include Minisat [22], CryptoMiniSat [37] and MapleSAT
[26]. For a comprehensive survey on modern SAT solvers and the various techniques, the reader
may refer to [4].

In order to use SAT solvers to solve the set S of boolean polynomials, one must first convert
the polynomials into CNF clauses. One way is to convert each polynomial into its equivalent CNF
form by means of truth tables. We term this technique as the ‘sparse strategy”. However, this
approach will not be feasible when the polynomial has high degree or many terms.

In [2], the authors presented a more general and efficient method to convert a boolean poly-
nomial into CNF. Briefly, for each degree 2 term xixj in f , introduce a new variable yk to get
yk = xixj . Convert yk = xixj into the following CNF:

(yk ∨ ¬xi ∨ ¬xj) ∧ (¬yk ∨ xi) ∧ (¬yk ∨ xj).

Replace the xixj term in f by yk to get a linear equation of the form

xi1 + xi2 + . . .+ xis + yj1 + . . .+ yjt + c,

where c ∈ F. Fix a cutting number w < s + t. Split the linear polynomial into a sum of linear
polynomials, each with w terms (one of the polynomials may have fewer than w terms). Introduce
new variables zl for each of these short linear polynomials and continue the process of splitting.
Finally, convert the equation of the form z = x1 +x2 + . . .+xw into the CNF with 2w clauses, each
containing all the variables z, x1, . . . , xw and an odd number of the variables are negative literals.
Note that one can combine the above two strategies into a hybrid (s, w) strategy, namely, one
uses the sparse strategy when the number of terms of f ≤ s and the dense strategy with cutting
number w, otherwise.

2.2 Algebraic cryptanalysis and related works

Broadly speaking, algebraic cryptanalysis seeks to represent a cipher algebraically so that the
unknown key can be recovered by using one of the algebraic solving techniques. This can be
achieved since ciphers are essentially composed of operations/components such as linear operations,
logic gates, rotations, permutations, and S-boxes. Among these operations, finding an algebraic
representation of S-boxes may be the least straightforward as most S-boxes used in ciphers are of
high algebraic degree. However, one may represent the input and output bits of an S-box layer
implicitly as polynomials of lower degree of the form f(x, y) = 0 [35]. In particular, for an n-bit
S-box with n ≤ 6, one can find a set of quadratic equations to represent the S-boxes.

Consider a block cipher E and a random master key K. For any plaintext P and corresponding
ciphertext C = EK(P), one can now obtain a set of equations in a set of unknown variables
representing the key K, as well as the input and output bits of each component in E. More
precisely, suppose that E consists of r rounds and suppose that each round has k components.
Thus, E can be viewed as a composition of rk components. Let xi denote the input bits of each layer
and let xrk denote the output bits of the last layer. Thus, the block cipher E can be represented
by the set S of equations: S = {fi(xi, xi+1,Ki) = 0 : i = 1, 2, . . . , rk}, where fi is an equation
that represents the i-th component and Ki is the round key (which may or may not occur in
the equation). For a given plaintext/ciphertext (P,C) pair, we substitute x0 = P and xrk = C

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Improved Algebraic Attacks on Lightweight Block Ciphers 5

and denote the set as S(P ;C). In most block cipher designs, one can add to S(P ;C) equations
representing the key schedule as well. In this way, determining the unknown key boils down to
solving the system S(P ;C).

Notice that as the number of rounds of E increases, the number of variables in this system will
increase correspondingly. Thus, solving this system with any of the polynomial solving methods will
be less feasible. For instance, this method was employed in [14,30] on DES and AES, respectively.

Remark 1 In the preceding description, we construct a separate equation for each component in
the block cipher. Many of these equations may be simple linear equations (such as permutation
layer or rotation layer). As such, some of these components may be combined to form a more
compact system. However, combining too many layers together may cause the resulting equations
to have a much higher degree or many more terms.

In order to construct more equations involving the unknown key K, one can consider multiple
known plaintext/ciphertext pairs and take the union of the sets of polynomial equations. While
this technique may not be useful for most polynomial solvers (since the number of variables is much
larger), in some cases, this enlarged set may produce some linear equations in the corresponding
vector spaces, thus allowing ElimLin to proceed. Such an approach was shown to be successful
for the Present block cipher [31] where five rounds of the cipher can be broken with 5 known
plaintext/ciphertext pairs and 40 fixed key bits. In [38], the result was improved to solve 5 rounds
with 2 known plaintexts/ciphertexts and 28 fixed key bits as well as 6 rounds with 1 known
plaintext/ciphertext pair and 52 fixed key bits using an enhanced version of CSA where ElimLin
was incorporated into the solver among other added features.

A similar approach to use multiple plaintext/ciphertext pairs was adopted for the Simon ci-
pher as well. In [13], experiments on Simon with a 64-bit block size and 128-bit key size were
performed with both ElimLin and SAT solvers using multiple plaintext/ciphertext pairs. The
authors performed experiments with 3 different scenarios, namely, random plaintext/ciphertext
pairs (RP/RC), as well as plaintexts with small Hamming distance with and without an addi-
tional condition that at least two of the plaintexts satisfy a good truncated differential (SP/RC
or SP/SC).

From their experimental results, up to 10 rounds of Simon-64/128 can be solved using 8 pairs
of plaintext/ciphertext and 90 fixed key bits in the SP/RC setting. For the SP/SC setting, they
can similarly break 10 rounds by fixing less number of key bits (i.e., 70 bits) and using 10 pairs of
plaintext/ciphertext.

In [32], this method was improved to choose plaintext/ciphertext pairs that yield more linear
polynomials. Such plaintexts can be found due to the simple structure of the Simon cipher. As a
result, the author demonstrated that up to 11 rounds of Simon-32/64 can be solved when 12 pairs
of chosen plaintexts/ciphertexts were used and up to 12 rounds of Simon-64/96 can be solved with
10 chosen plaintext/ciphertext pairs.

In a slightly different direction, the advantage resulting from adding more linear equations to
the system of polynomials representing the cipher was exploited in [1]. In this work, algebraic
cryptanalysis was combined with Differential cryptanalysis. Concretely, linear equations repre-
senting good differential characteristics with a probability p were utilized to solve the polynomial
system, and a solution can be expected to be found after about 1/p such systems were tested.
Using this approach, it was reported in [1] that 6 or 7 rounds of the Present cipher can be solved.

3 An ElimLin-SAT framework

Motivated by the works highlighted in the preceding section, we now present our improved algebraic
attack. Essentially, our approach combines the strengths of both ElimLin and modern SAT solvers
to launch the algebraic attack. More precisely, let E be a block cipher and let (P1, C1), . . . , (Pt, Ct)
represent t plaintext/ciphertext pairs encrypted by E under some key K. The main ideas of our
attack work as follows.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

6 S-L. Yeo and al.

– For each i = 1, 2, . . . , t, construct the algebraic system Si = S(Pi;Ci) for the pair (Pi, Ci).
– Let S =

⋃t
i=1 Si.

– Using ElimLin with input S, construct the set L of linear equations.
– Set T = S ∪ L.
– Convert the equations in T into CNF clauses and solve the corresponding CNF clauses using

a good SAT solver.

Recall that in the ElimLin process, the goal is primarily to find linear polynomials so that
variables can be eliminated successively from the system. However, two main problems arise. First,
while the number of variables keeps on decreasing, the equations in the remaining variables tend
to grow much longer after each substitution. This is especially true if we use linear equations with
many terms. When converting them into the CNF form, the number of clauses will exponentially
rise to the length of these equations. Second, in most cases, the ElimLin procedure may not
generate sufficient linear equations to eliminate all the variables to solve the system.

To overcome the latter problem, we will use SAT solvers to solve our system instead. SAT
solvers provide a good alternative as they can typically work with many variables. However, notice
that apart for the key variables which are common to all the sets Si, the other variables occurring
in different sets are all distinct. This tends to limit the effectiveness of SAT solvers as information
on variables in one set will not provide any information on variables used in other sets. As such,
we apply ElimLin to the set S to search for linear equations, preferably to relate variables in
different sets. Instead of eliminating all the variables occurring in these linear equations from the
equations in S, we merely append them to S to form the extended system T . Finally, we convert
the equations in T into CNF clauses and feed into a modern SAT solver.

Remark 2 We observe that:

– By adding the linear equations to S, we are, in some sense, adding useful clauses to the system,
just like what SAT solvers seek to achieve with conflict driven clause learning techniques.

– For lightweight ciphers, the operations used tend to be less complex, and thus, the equations in
S will typically be shorter. From our experiments, we observed that the above approach tends
to be more effective when the equations in the set S are kept short.

– A couple of techniques can be employed to improve the above approach. In particular, one can
choose to eliminate variables occurring in very short linear equations. For our experiments in
this paper, we eliminate variables occurring in very short linear equations of the form a = b or
a = b+ 1 in the ElimLin step before the conversion into CNF clauses.
In addition, one can find short linear equations from the space spanned by the set L and use
these short linear equations instead of L.

It follows from our approach that one hopes to find as many linear equations as possible via
ElimLin. To this end, one can select the pairs (Pi, Ci) appropriately so that more linear equations
can result. The following lemma will be useful.

Lemma 1 Let xi, x
′
i, xj , x

′
j be 4 distinct variables and let L and L′ be two linear polynomials.

Consider the set A = {xixj + L, x′ix
′
j + L′, xi + x′i + c, xj + x′j + c′}, where c, c′ ∈ {0, 1}. Then

applying ElimLin yields the linear equation

f = L+ L′ + cxj + c′xi + cc′.

Proof The proof is straightforward. Simply substitute x′i = xi + c and x′j = xj + c′ into x′ix
′
j + L′

and add the result to the equation xixj + L to obtain f .

Remark 3 We remark that in Lemma 1, we may replace the variables by some linear polynomials
Li, Lj , L

′
i, L
′
j , respectively. Once again, we obtain a linear equation if we have Li + L′i = c and

Lj + L′j = c′.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Improved Algebraic Attacks on Lightweight Block Ciphers 7

Algorithm 1 Finding good differential trails

Input: Two plaintexts P and P ′

Output: Find as many linear equations as possible via ElimLin

Step 1. Let r = 1.

Step 2. Construct the sets S(P,C) and S(P ′, C′) for r rounds of cipher with xi’s as the variables in P and x′i’s as

the variables in P ′. Set S = S(P,C) ∪ S(P ′, C′).
Step 3. Suppose that the nonlinear components of the cipher are of the form LiLj + L, where Li, Lj , L are all

linear.
For (each such a form) do

For xk be a variable in Li or Lj do
Add to S the linear equations xi + x′i + δi, where δi = 0 for i 6= k and δk = 1.
While new linear equations are obtained Do

Perform ElimLin to obtain linear relations among the output variables of round r.
Increase r to r + 1 and continue to perform ElimLin.

End While
End For

End For
Step 4. Choose a k such that the total number of linear equations obtained in the above procedure is the largest.

Fig. 1 One round of Simon cipher

From Lemma 1 and Remark 3, we describe in Algorithm 1 the steps how to find good differential
trails.

Remark 4 Starting from this trail, one may work backwards, that is, perform decryption, to extend
the number of rounds exhibiting this good differential trail for part of the cipher.

4 Algebraic attack on the Simon cipher

4.1 Description of the Simon cipher

The Simon [3] family of lightweight block ciphers was designed by the National Security Agency
that optimizes for hardware implementations. It is based on a typical Feistel design and comprises
3 simple operations, namely, the bitwise ‘and’, ‘rotation’ and ‘xor’ operations. The specifications
allowed for a number of block sizes and key sizes with varying number of rounds in each case. Let
n denote the word size. Then, Simon-2n/mn will denote Simon with block size and key size 2n
and mn, respectively, where m = 2, 3 or 4. In this paper, we will fix m = 4 and consider the cases
where n = 16 and n = 32, that is, Simon-32/64 and Simon-64/128.

The master key K has mn bits and is partitioned into m words to be used as the round keys
for the first m rounds of the cipher. Subsequent round keys are generated as linear combinations

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

8 S-L. Yeo and al.

of the key bits in the preceding m rounds. Let Ki = (Ki
n−1,K

i
n−2, . . . ,K

i
0) denote the round key

used in round i, where 0 ≤ i ≤ T − 1. For i ≥ m and j = 0, 1, . . . , n− 1, we have

Ki
j = Ki−1

(j+3) mod n +Ki−m+1
j +Ki−1

(j+4) mod n +Ki−m+1
(j+1) mod n +Ki−m

j + c+ (zj)i−m (1)

where c = 2n − 4 = 0xff · · · fc is a constant, and (zj)i is the i − th bit from the one of the five
constant sequences z0, z1, . . . , z4. The details of the key schedule can be found in [3].

The round function used for Simon is shown in Figure 1. Observe that the nonlinearity of the
function is only provided by the ‘and’ operation. For an T -round Simon cipher, let (xin−1, . . . , x

i
0||

yin−1, . . . , y
i
0)) denote the input of round i for i = 0, 1, . . . , T − 1 and (xTn−1, . . . , x

T
0 ||yTn−1, . . . , yT0)

be the output after the last round. The following relations hold for any j = 0, 1, . . . , n− 1:

xi+1
j = xij−1x

i
j−8 + xij−2 + yij +Ki

j ,

yi+1
j = xij . (2)

We can now construct the ANF system for a plaintext/ciphertext pair of an T -round Simon
cipher as follows. For i = 0, 1, . . . , T − 1, let (xij ||yij) and Ki

j , j = 0, 1, . . . , n− 1 denote the input

and the round key of round i and let (xTj ||yTj) denote the output of the cipher. Using Equation (1),
construct the linear equations for each of the round key variables for i = m,m+ 1, . . . , T − 1. In
addition, Equation (2) gives the equation for each of the xi+1

j in terms of the xij and Ki
j . Hence,

S comprises (2T − 4)n equations of degree at most 2. As all indices are computed modulo n,
in what follows, we omit modn in indices, that is, xij and Ki

j denotes for xij mod n and Ki
j mod n,

respectively.

4.2 Plaintext pairs with many linear relations

Let us first work with 2 plaintext/ciphertext pairs. Our goal is to find plaintext pairs (P,C)
and (P ′, C ′) that yield many linear relations via ElimLin. Observe from Equations (2) that the
equations for a Simon round are of the form given in Lemma 1. More precisely, let xij and x,ij denote
the variables for the equations arising from the (P,C) pair and the (P ′, C ′) pair, respectively.
Further, let δij = xij + x,ij . We have:

δi+1
j =δij−1x

i
j−8 + δij−8x

i
j−1 + δij−1δ

i
j−8 + δij−2 + δi−1j . (3)

For example, if δij−1 = δij−8 = 0 and δij−2 = δi−1j , then δi+1
j = 0. By applying Algorithm 1,

one finds that the following differential trail generates many linear relations for Simon-32/64. This
trail can be easily extended to Simon-64/128.

Let P and P ′ be two plaintexts with a non-zero difference at bit n and identical everywhere
else. In other words, x0j = x,0j for j 6= n and x0n = x,0n + 1. In Table 1, we show the trail for the

left half of the cipher. Here, ∗ denotes a nonlinear difference and xij denotes the j-th input bit of
round i for the pair (P,C).

From Table 1, we can see that linear relations can be obtained up to the input of round 6
(for bits 15 and 8 in round 6). We next extend this differential trail backwards to generate more
rounds.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Improved Algebraic Attacks on Lightweight Block Ciphers 9

Table 1 Trail for the left part of the cipher

Bit position 15 14 13 12 11 10 9 8
Round 0 0 0 0 0 0 0 0 0
Round 1 1 0 0 0 0 0 0 0
Round 2 0 0 0 0 0 0 0 0
Round 3 ∗ 0 0 0 0 0 x26 + x38 ∗
Round 4 0 0 0 0 x26 + x38 + x410 ∗ ∗ 0
Round 5 ∗ 0 x26 + x38 +

x410 + x512

∗ ∗ ∗ ∗ ∗

Round 6 x26 + x38 +
x410 + x512 +
x614

∗ ∗ ∗ ∗ ∗ ∗ x28 + x310 +
x412 + x514 +
x60

Bit position 7 6 5 4 3 2 1 0
Round 0 0 0 0 0 0 0 0 0
Round 1 0 0 0 0 0 0 0 0
Round 2 x26 0 0 0 0 0 1 x28
Round 3 0 0 0 0 1 x28 + x310 ∗ 0
Round 4 ∗ 0 1 x28 + x310 + x412 ∗ ∗ ∗ ∗
Round 5 1 x28 + x310 + x412 + x514 ∗ ∗ ∗ ∗ ∗ 0
Round 6 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Extending one round

Let P and P ′ be as in the preceding trail. We seek to find some plaintexts u0 = (u0n−1, . . . , u
0
0||

v0n−1, . . . , v
0
0) and u,0 = (u,0n−1, . . . , u

,0
0 ||v

,0
n−1, . . . , v

,0
0) such that u1j + u,1j = x0j + x,0j and v1j + v,1j =

y0j + y,0j . In other words, we have the following equations:

u0n−1 =u,0n−1 + 1

u0j =u,0j for j = 0, 2, . . . , n− 2

u1j =u,1j for j = 0, 1, . . . , n− 1.

It follows that v0j = v,0j except when j − 1, j− 2, j− 8 = n− 1. We consider each of these cases
in turn.

– j = 0: We have v00 + v,00 = u0n−8.

– j = 1: We have v01 + v,01 = 1.
– j = 7: We have v07 + v,07 = u06.

Thus, we have the following difference when n = 16:

D1 : u0 + u,0 =(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 || 0, 0, 0, 0, 0, 0, 0, u06, 0, 0, 0, 0, 0, 0, 1, u08).

Extending two rounds

Using the difference D1, we once again trace backwards to extend by another round. From
D1, let u0n−8 = u06 = 0. Let the bits in the new extended round be (P 0

i ||Q0
i) and (P

′0
i ||Q

′0
i), for

i = 0, 1, . . . , n− 1. Following the same analysis as above, we obtain the following difference:

P 0
i + P

′0
i =

{
1 if i = 1, n, 2n− 4,
0 otherwise

Q0
i +Q

′0
i =

1 if i = n− 1, 3,
P 0
n−6 if i = 2,
P 0
8 if i = 9,

0 otherwise

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

10 S-L. Yeo and al.

For n = 16, we have:

D2 : (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0||1, 0, 0, 0, 0, 0, P 0
8 , 0, 0, 0, 0, 0, 1, P

0
10, 0, 0).

Note that to have u08 = u06 = 0, one needs to guess the two key bits K8 and K6.

Extending by 3 rounds and beyond

In the same way, we can further extend the trail to more rounds. We illustrate with an example.
Suppose that the master key K is such that K0,j = 0 for all even integers j. Let P be a plaintext
such that x0j = 0 for all even integers j. Then, it follows from Eq (2) that for i = 1, . . . ,m, we

have xij = 0 for all even integers j.

One can now extend the trail with difference D2 further as shown in Table 2. Here, note that
Round −1 refers to the right half of the plaintext (or Round 0). In other words, the whole plaintext
difference is given by:

(D4, D5) : (1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0||1, 0, 0, 0, 0, 0, P 0
8 , 0, 0, 0, 0, 0, 1, P

0
10, 0, 0).

Table 2 Extended trail for the left part of the cipher

Bit position 15 14 13 12 11 10 9 8
Round -1 (D5) 1 0 0 0 0 0 0 0
Round 0 (D4) 0 0 0 0 0 0 0 0
Round 1 (D3) 1 0 0 0 0 0 0 0
Round 2 (D2) 0 0 0 0 0 0 0 0
Round 3 (D1) 1 0 0 0 0 0 0 0

Round 4 0 0 0 0 0 0 0 0
Round 5 1 0 0 0 0 0 0 0
Round 6 0 0 0 0 0 0 0 0
Round 7 ∗ 0 0 0 0 0 x26 + x38 ∗
Round 8 0 0 0 0 x26 + x38 + x410 ∗ ∗ 0
Round 9 ∗ 0 x26 + x38 +

x410 + x512

∗ ∗ ∗ ∗ ∗

Round 10 x26 + x38 +
x410 + x512 +
x614

∗ ∗ ∗ ∗ ∗ ∗ x28 + x310 +
x412 + x514 +
x60

Bit position 7 6 5 4 3 2 1 0
Round -1 (D4) 1 0 0 0 1 0 0 0
Round 0 (D4) 0 0 1 0 0 0 0 0
Round 1 (D3) 0 0 0 0 1 0 0 0
Round 2 (D2) 0 0 0 0 0 0 1 0
Round 3 (D1) 0 0 0 0 0 0 0 0

Round 4 0 0 0 0 0 0 0 0
Round 5 0 0 0 0 0 0 0 0
Round 6 x26 0 0 0 0 0 1 x28
Round 7 0 0 0 0 1 x28 + x310 ∗ 0
Round 8 ∗ 0 1 x28 + x310 + x412 ∗ ∗ ∗ ∗
Round 9 1 x28 + x310 + x412 + x514 ∗ ∗ ∗ ∗ ∗ 0
Round 10 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

In our experiments, we begin with a plaintext difference of (Di, Di+1) and try to solve as many
rounds of the cipher as possible.

Remark 5 It is a common technique to guess some key bits when performing algebraic cryptanal-
ysis [31,13,38]. One may fix the key bits randomly or choose the most frequently occurring bits.
In our approach, we first fix key bits in order to extend our differential trail as this will lead to
more linear relations. We can then fix additional key bits by using other techniques.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Improved Algebraic Attacks on Lightweight Block Ciphers 11

Extending to more plaintext/ciphertext pairs

Often, two plaintext/ciphertext pairs may not generate sufficiently many linear equations.
Observe that we can easily obtain a rotated trail by rotating the left half and the right half
simultaneously by i bits for i = 0, 1, . . . , n − 1. In this way, we can get n differences. For a
difference D, let D(i) denote the difference where the left and right halves are simultaneously
rotated by i bits to the right. To obtain t different plaintext pairs that are likely to generate many
linear equations, we pick a set S of s integers between 0 and n− 1, where t ≤ 2s and take the first
t differences from the space vector spanned by {D(i) : i ∈ S}. In the following, we list down the
set S, the structure of the plaintext and the key bits we fix for our experiments.

In the following, let (x0n−1, . . . , x
0
0||y0n−1, . . . , y00) represent the bits of one of the plaintexts P .

Let the master key bits be K0K1 . . .Kmn−1.

– 12 rounds and fewer (Simon-32/64 and Simon-64/128): Choose P so that x02i = 0 for i =
0, 1, . . . , (n− 2)/2. Let D = (D1, D2). Set S = {0, 1, 2, 3, . . . , s− 1}.

– 13 rounds (Simon-32/64): Guess the key bits Ki for i ∈ {10, 8, 6, 4, 2, 0}. Pick a plaintext P
such that x02i = 0 for i = 0, 1, . . . , 7 and y0i = Ki for i ∈ {8, 7, 6, 5, 4, 3}. Let the plaintext
difference be D = (D2, D3). Set S = {0, 1, 2, 3} to obtain less than 16(P,C) pairs.

– 13 rounds (Simon-64/128): Guess the key bits Ki for i ∈ {24, 22, 20, 6, 4, 2}. Pick a plaintext P
such that x02i = 0 for i = 0, 1, . . . , 15 and y0i = Ki for i ∈ {24, 22, 20, 6, 4, 2}. Let the plaintext
difference be D = (D2, D3). Set S = {0, 2, 4} to obtain less than 8 (P, C) pairs.

– 14 rounds (Simon-32/64): Let I be all the even integers from 1 to 15. Suppose that the master
key has bits K16+i = 0 for i ∈ I. Guess the key bits Ki for i ∈ I. Pick a plaintext P such
that x0i = 0 for i ∈ I and y0i = Ki for i ∈ I. Let the plaintext difference be D = (D3, D4). Set
S = {0, 2, 4, 6} to obtain less than 16(P,C) pairs.

– 14 rounds (Simon-64/128): Let I1 = {24, 22, 20, 6, 4, 2} and let I2 be all the even integers from
1 to 31. Suppose that the master key has bits K32+i = 0 for i ∈ I1. Guess the key bits Ki for
i ∈ I2. Pick a plaintext P such that x0i = 0 for i ∈ I2 and y0i = Ki for i ∈ I2. Let the plaintext
difference be D = (D3, D4). Set S = {0, 2, 4} to obtain less than 8(P,C) pairs.

– 15 rounds and more (Simon-32/64): Let I be all the even integers from 1 to 15. Suppose that
the master key has bits K16+i = 0 and K32+i = 0 for i ∈ I. Guess the key bits Ki for i ∈ I.
Pick a plaintext P such that x0i = 0 for i ∈ I and y0i = Ki for i ∈ I. Let the plaintext difference
be D = (D4, D5). Set S = {0, 2, 4, 6} to obtain less than 16(P,C) pairs. In the same way, this
can be easily extended to 16 rounds and more.

– 15 rounds and more (Simon-64/128): Let I1 = {24, 22, 20, 6, 4, 2} and let I2 be all the even
integers from 1 to 31. Suppose that the master key has bits K64+i = 0 for i ∈ I1 and K32+i = 0
for i ∈ I2. Guess the key bits Ki for i ∈ I2. Pick a plaintext P such that x0i = 0 for i ∈ I2 and
y0i = Ki for i ∈ I2. Let the plaintext difference be D = (D4, D5). Set S = {0, 2, 4} to obtain
less than 8(P,C) pairs. In the same way, this can be easily extended to 16 rounds and more.

Remark 6 For the experiments in this paper, we have only considered a class of weak keys when
the number of rounds is 14 or more, namely, we have considered master keys with some of their
key bits equal to 0. This is to ensure that the intermediate bits xij for even j will be 0 for the first
few rounds in order to facilitate the extension of the differential trails beyond 13 rounds. In the
general case for a T -round Simon cipher with T > 12, one can do the following. Construct the
equations for the first T − 12 rounds with the output differences given by the plaintext differences
for the 12-round experiments described above. Fix a subset of key bits and guess their values.
Find a set of plaintexts that satisfy the corresponding equations and use these plaintexts to solve
the T -round cipher.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

12 S-L. Yeo and al.

4.3 Our experimental results

Based on the above analysis, we performed experiments on the Simon cipher. This section reports
the average timings obtained using an SAT solver for different rounds on 2 variants: Simon-32/64
and Simon-64/128.

We performed experiments for up to 16 rounds using up to 16 chosen plaintext/ciphertext pairs.
Our experiments were performed according to the following procedure. We first generated at ran-
dom some problem instances (at least 5 and up to 50). Each instance corresponds to a random key
and plaintext/ciphertext pairs satisfying the desired differential trail. We then used Magma [8] to
generate the ANF equations. For each of the instances, we converted the ANF equations into CNF
clauses by using both dense/sparse strategies [33]. We also used different settings of parameters
(i.e., max vars sparse and cutting number) to convert. From our observations, the ANF equations
in which their length and number of variables are from 3 to 6 dominate the systems. We hence ran
different strategies, that is max vars sparse varies from 3 to 5 and cutting number varies from 4 to
6, for each instance of problems1. The timings were obtained by running CryptoMiniSat 5.0.1 [36]
on a 3.6GHz Intel Core i7 CPU with 8GB RAM. Note that we ignore the timings for conversion
of ANF equations into CNF clauses and consider it as a preprocessing step.

The following tables present the average timings obtained for rounds from 8 to 15 for Simon-
32/64 and Simon-64/128, respectively. As mentioned, we ran different conversion strategies for
each instance and our average is taken over the timings obtained from the best strategies over all
the random instances.

Average timings on Simon-32/64

Round # Pairs # Key Timing
Attacked bits fixed (s)

8 4 0 < 1
9 4 0 < 1
10 3 0 32.9
10 4 0 < 1
11 6 0 1.7
12 12 0 48.9
12 16 0 15.8
13 14 6 86.8
13 16 5 61.4
13 16 6 17
14 16 16 51.4
15 16 24 328.2

Average timings on Simon-64/128

Round # Pairs # Key Timing
Attacked bits fixed (s)

8 5 0 < 1
9 5 0 < 1
10 5 0 < 1
11 5 0 1.2
11 6 0 < 1
12 6 0 12.6
13 6 6 13
14 8 22 < 1
15 8 38 < 1
16 8 54 < 1

The above tables show that we can break up to 10 rounds of Simon-32/64 within 1 second by
using only 4 plaintext/ciphertext pairs and without fixing any key bit. For a class of weak keys
(with 16 of the master key bits fixed to 0), we can break 15 rounds by guessing 8 key bits using
16 plaintext/ciphertext pairs for each guess. We obtained even better timings on Simon-64/128
(up to 12 rounds without fixing any keybits) in less than 1 s. By guessing 6 key bits, we can break
upto 16 rounds for a class of weak keys using only 8 chosen plaintext/ciphertexts for each guess.

Table 3 makes a comparison between our experimental results and other results in the literature.
We compare our result on Simon-32/64 and Simon-64/128 with the ones in the papers [32] and [13],
respectively.

Remark 7 To the best of our knowledge, the best attack on Simon is a differential attack found
in [6]. According to their results, their attack can break upto 19 rounds of Simon-32/64 and
26 rounds of Simon-64/128. However, the amount of data required are respectively 231 and 263

plaintext/ciphertext pairs, which is hardly practical. By contrast, we have implemented our attacks
on a 3.6GHz Intel Core i7 CPU and all the timings we obtained are less than 10 minutes. We

1 See [33] for more details about these parameters.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Improved Algebraic Attacks on Lightweight Block Ciphers 13

Table 3 A comparison of Algebraic Attacks on the Simon cipher

Paper Cipher Round # Pairs # Key Timing (s)
Attacked bits fixed

Raddum [32] Simon-32/64 11 12 0 Not reported
This paper Simon-32/64 12 12 0 48.9
This paper Simon-32/64 12 16 0 15.8
This paper Simon-32/64 15 16 24 328.2

Courtois et al. [13] Simon-64/128 10 10 70 417.73
This paper Simon-64/128 10 5 0 < 1
This paper Simon-64/128 16 8 54 < 1

Fig. 2 One round of Present cipher

emphasize that the focus of this work is to propose better algebraic attacks as evidenced by Table
3.

5 Algebraic attack on the Present cipher

5.1 Description of the Present cipher

Next, we turn to another lightweight block cipher, the Present cipher [7]. Present is a block cipher
with block size of 64 bits and key size of 80 or 128 bits. In this paper, we only focus on the 80-bit
key Present cipher. Its design is based on a substitution-permutation network with 16 parallel
executions of a 4-bit S-box. One round of the cipher is shown in Figure 2.

Algebraic attacks on Present were carried out in [31,38] where ElimLin and the enhanced ver-
sion of CSA were employed to solve the algebraic system. In these attacks, 21 quadratic equations
were used to represent the S-box. We will show that in fact, 4 quadratic equations are sufficient
to represent the S-box. Indeed, consider the following 4 equations:

x4y1 + x4y3 + x2 + x3 + y1 + y4 + 1 =0,

y1y3 + x4 + y2 + y4 + 1 =0,

x2x3 + x1 + x2 + x4 + y4 =0,

x1x2 + x1x3 + x1 + x2 + y1 + y3 + y4 + 1 =0,

where x1, x2, x3, x4 represent the input bits and y1, y2, y3, y4 represent the output bits.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

14 S-L. Yeo and al.

First, one can check that all the 16 substitutions satisfy the above 4 equations. Next, fix the
input bits x1, x2, x3, x4. We can rewrite the equations as:

y4 =x2x3 + x1 + x2 + x4,

y1 + y3 + y4 =x1x2 + x1x3 + x1 + x2 + 1,

y1 + y4 + x4(y1 + y3) =x2 + x3 + 1,

y1y3 + y2 + y4 =x4 + 1

Observe that from the first equation, one can obtain y4. Substituting the value of y4 into the
second equation gives y1 + y3. One then gets y1 from the third equation and thus, the value of y3
from the second equation. Finally, one obtains the value of y2 from the last equation. This shows
that whenever (x1, x2, x3, x4) is fixed, (y1, y2, y3, y4) is uniquely defined.

We use these four equations to represent the S-box in Present. We may also combine the
permutation layer and the round key layer in the next round to form the linear layer. For each
round, we thus introduce 128 variables as the inputs of these two layers. Each Present round thus
comprises 64 quadratic equations and 64 linear equations in 128 variables.

As for the key schedule, we let k0, k1, . . . , k79 denote the master key and introduce 4 new
variables for each round. Since these 4 new variables go through an S-box, each round of the key
schedule will involve 4 quadratic equations. Combining these key equations to the Present round
equations will thus give all the equations necessary to represent the Present cipher.

5.2 Differential trails for Present

Observe that the S-box equations for Present follow the form discussed in Lemma 1 (see Remark 3).
Thus, one can hope to find good differential trails that generate many linear equations. By applying
Algorithm 1, we selected one for which only the rightmost bit of an S-box is active. With this
difference, it can be shown that linear equations can be generated up to 4 rounds of the cipher.

Similar to the analysis on Simon, one can extend this differential trail backwards to more
rounds involving some fixed key bits. In addition, one can consider multiple plaintext/ciphertext
pairs.

We now list down the plaintext, the differences and the fixed key bits for our experiments. In
particular, we demonstrate how we may choose up to 16 pairs of plaintexts/ciphertexts. Let the
round keys be denoted by Ki = (Ki

0,K
i
1, . . . ,K

i
63).

– For 7 rounds and fewer: Choose P to be a random plaintext. Let D0, D1, D2, D3 be 64-bits
strings with 1 in bit 4i, i = 15, 14, 13, 12 and 0 everywhere else. Consider the vector space V
spanned by these 4 differences and choose the plaintexts with difference (with respect to P)
coming from V .

– For 8 rounds: Set I = {51, 50, 49, 48, 35, 34, 33, 32, 19, 18, 17, 16,
60, 61, 62, 63}. Guess the key bits K0,i for i ∈ I. Choose a plaintext P such that P 0

i = K0,i for
i ∈ I. Let D0, D1, D2, D3 be the following (written in hexadecimal):

D0 =0x000C000000000000,

D1 =0x0000000C00000000,

D2 =0x00000000000C0000,

D3 =0x000000000000000C.

As before, we generate the space of 16 differences from this set.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Improved Algebraic Attacks on Lightweight Block Ciphers 15

Table 4 Average timings in seconds on Present

Round Attacked # Pairs # Key bits fixed Timing (s)
5 2 0 3.4
6 4 0 1.4
7 6 0 394.5
7 7 0 270.5
8 6 16 135.2
9 8 32 2.4

Table 5 A comparison of Algebraic Attacks on the Present cipher

Paper Method Round # Pairs # Key Timing
Attacked bits fixed

Nakahara et al. [31] ElimLin 5 5 40 < 3 minutes
Sepehrdad [34] ElimLin 5 16 35 1.845 hours
Sepehrdad [34] PolyBori 5 10 37 0.523 hours
Yeo et al. [38] CSA + ElimLin 5 2 28 2120.8(s)
Yeo et al. [38] CSA + ElimLin 6 1 52 1489.0(s)

This paper SAT solvers 5 2 0 3.4(s)
This paper SAT solvers 6 4 0 3.4(s)
This paper SAT solvers 9 8 32 2.4(s)

– For 9 rounds: Guess the key bits K0,i for i = 15, 14, . . . , 0 and K1,j for j ∈ I. We start from
the plaintexts for 8 rounds (see above) and then trace back to obtain the required plaintexts
for 9 rounds.

5.3 Our experimental results

Table 4 presents the average timings obtained for rounds from 5 to 9 for the Present cipher. The
experiments in this section were set up as the same as those in Section 4.3. By fixing 32 key bits
and using 8 pairs of plaintext/ciphertext, we can break 9 rounds of Present within few seconds.

We make a comparison in Table 5 between our method and other techniques in the literature.
As shown, the existing algebraic attacks were reported up to 6 rounds only. Moreover, in all
existing algebraic attacks on both 5 rounds and 6 rounds Present cipher, a portion of the key bits
needs to be fixed. This contrasts with our attack which can solve 6-round Present cipher using 4
chosen plaintexts without fixing any key bit. To the best of our knowledge, our paper is the first
report breaking the Present cipher beyond 6 rounds using algebraic attacks.

6 Further Enhancements

Our attack framework described in the previous sections makes use of Elimlin as an essential tool
to generate more linear relations among the sets of variables from different plaintext/ciphertext
pairs. As explained earlier, these linear relations are helpful to the SAT solver as they may provide
more relations that cannot be easily deduced by the SAT solvers from the original equations. On
the other hand, these linear relations are efficiently obtained from the ElimLin process through
algebraic means. This section will investigate other techniques to further enhance the ElimLin-
SAT framework. First, we will take a closer look at the linear equations generated by the ElimLin
process. Next, we describe how we may exploit differential representations among different plain-
texts to create more relations for the SAT solver. We will demonstrate the effectiveness of these
techniques by performing experiments to attack Simon-32/64.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

16 S-L. Yeo and al.

6.1 More about ElimLin and higher order differentials

In this section, we will shed more light on the ElimLin process on the cipher equations. Concretely,
we will examine the possible linear equations that are obtained after performing ElimLin on the
sets of equations. We will use the Simon-32/64 cipher to illustrate our ideas.

First, let P and P ′ be two plaintexts with their difference taking the formD0 = (0, 0, . . . , 0||1, 0, . . . , 0).
Let C and C ′ be the ciphertexts of P and P ′ under a certain key K after r rounds. Let S(P,C)
and S(P ′, C ′) be the two sets of equations representing the (P,C) and (P ′, C ′) encryptions. Ac-
cording to Table 1, one can obtain linear relations for some of the output difference bits in terms
of the intermediate output bits of one of the plaintext/ciphertext pairs. Such linear relations can
be obtained for output difference bits up to round 6. In fact, these linear relations are precisely
the linear relations obtained by performing ElimLin on S(P,C) ∪ S(P ′, C ′) up to round 6.

Similarly, by looking at the difference C + C ′, one can also obtain some linear equations for
the last few rounds. In fact, the following lemma holds:

Lemma 2 Let ∆i = (δin−1, . . . , δ
i
0) denote the output difference after round i for i = 0, 1, . . . , T .

Let Ki denote the round key used in round i. For j = 0, 1, . . . , n− 1, we have

– δij is a known value derived from the ciphertext bits for i = T, T − 1, T − 2;

– δT−3j = fj(K
T−1), where f is a function of the bits in KT−1 with degree deg(fj) ≤ 1.

– δT−4j = gj(K
T−1,KT−2), where gj is a function of the bits in KT−1 and KT−2 with deg(gj) ≤

2.

Proof Let xi = (xin−1, . . . , x
i
0) denote the left half of the output bits after round i for the plaintext

P .

– Since both C and C ′ are known, it follows easily that ∆T and ∆T−1 are known. Now, from
Equation (3), we see that ∆T−2 is a function of the bits in ∆T ,∆T−1 and xT−1. Clearly, xT−1

is the right half of C which is known. Thus, it follows that ∆T−2 is known.
– For all j = 0, 1, . . . , n− 1, it follows from Equation (2) that xT−2j = xT−1j−1 x

T−1
j−8 + xT−1j−2 + xTj +

KT−1
j = KT−1

j + cj where cj is a constant. Substituting into Equation (3) then yields:

δT−3j =δT−2j−1 (KT−1
j−8 + cj−8) + δT−2j−8 (KT−1

j−1 + cj−1)

+ δT−2j−1 δ
T−2
j−8 + δT−2j−2 + δT−1j

=δT−2j−1 K
T−1
j−8 + δT−2j−8 K

T−1
j−1 + bj ,

where bj is a known constant.
– Similarly, one can show that

xT−3j = KT−1
j−1 K

T−1
j−8 + Lj(K

T−1
j−1 ,K

T−1
j−2 ,K

T−1
j−8 ,K

T−2
j),

where deg(Lj) ≤ 1.
Hence,

δT−4j = (KT−1
j−2 K

T−1
j−9 + Lj−1)(δT−2j KT−1

j−9 + δT−2j−9 K
T−1
j + bj−8)

+ (KT−1
j−9 K

T−1
j + Lj−8)(δT−2j−2 K

T−1
j−9 + δT−2j−9 K

T−1
j−2 + bj−1) + gj

= g′j ,

where both gj and g′j have degrees at most 2.

It follows from Lemma 2 that the output difference bits in round T−3 are linear relations of the
last round key bits while only a few linear relations can be expected in round T − 4 (since C and
C ′ are random). In the case where T − 4 ≤ 6, the two sets of linear equations may further interact

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Improved Algebraic Attacks on Lightweight Block Ciphers 17

to create more linear equations through the ElimLin process. Otherwise, the ElimLin process does
not yield additional linear equations. Note that the above argument holds for any arbitrary input
difference but we have chosen the input difference that gives the most linear equations.

Next, we consider a set of more than two plaintext/ciphertext pairs. Let S be a set of t
plaintexts. By considering the encryptions of any two different plaintexts in S, the above argument
suggests that ElimLin will produce linear relations among the output difference bits and the
plaintext input bits. We now show that in some instances, one may obtain more linear relations
through the so-called higher order differences.

We will use the following notations. For a plaintext P , let xij(P) denote the j-th bit after round

i for the plaintext P . For any set S of plaintexts, let δij(S) denote the sum
∑

P∈S x
i
j(P).

Lemma 3 For i, j = 0, 1, . . . , n − 1, let ji denote j − i mod n. Let J = {(j1, j8), (j8, j1)}. Let
S = {P1, P2, P3, P4} be a set containing 4 distinct plaintexts. We have:

δi+1
j (S) =

∑
(a,b)∈J

(δia(P1, P2)δib(P1, P3) + xia(P4)δib(S) + δia(S)δib(S))

+ δij2(S) + δi−1j (S).

Proof The proof works by splitting δi+1
j (S) = δi+1

j (P1, P2) + δi+1
j (P3, P4) and applying Equation

(3). Concretely, we have:

δi+1
j (S) =δi+1

j (P1, P2) + δi+1
j (P3, P4)

=
∑

(a,b)∈J

(xia(P1)δib(P1, P2) + δia(P1, P2)δib(P1, P2)+

xia(P3)δib(P3, P4) + δia(P3, P4)δib(P3, P4))+

δij2(P1, P2) + δij2(P3, P4) + δi−1j (P1, P2) + δi−1j (P3, P4)

=
∑

(a,b)∈J

(δia(P1, P3)δib(P1, P2) + xia(P3)δib(S) + δia(P1, P2)δiB(S)

+ δia(S)δib(S)) + δij2(S) + δi−1j (S)

=
∑

(a,b)∈J

(δia(P1, P3)δib(P1, P2) + xia(P4)δib(S) + δia(S)δib(S)) + δij2(S)

+ δi−1j (S).

Remark 8 Note that the expression for δij(S) given in Lemma 3 is not unique as one can write

δi+1
j (S) as sums of different pairs. For instance, another way to write δi+1

j (S) is δi+1
j (S) =

δi+1
j (P1, P3) + δi+1

j (P2, P4).

For i = 0, 1, . . . , n− 1, let di = (0, . . . , 0||0, . . . , 1, 0, . . . , 0), where bit i of the right half of di is
1 and all other bits are 0. Let Vi be the linear span of {dn−1, dn−2, . . . , dn−1−i} so |Vi|= 2i+1. For
any plaintext P , let Si(P) denote the set Si(P) = {P + v : v ∈ Vi}. In this case, we have for i 6= 0,∑

P ′∈Si(P)

P ′ = 0.

Observe that Table 1 gives the differential trail for S0(P) for any plaintext P . By applying
Lemma 3, one can obtain the differential trail for S1(P) as follows. Let St(P) = {P1, P2, . . . , P2t+1}.

By comparing Tables 1 and 6, we see that one finds new linear relations for δij(S1) for (i, j) =
(3, 15), (3, 8), (3, 1), (4, 10), (4, 3), (5, 12), (5, 5), (6, 14).

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

18 S-L. Yeo and al.

Table 6 The left half differential trail for S1(P)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Round 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Round 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Round 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Round 3 0 0 0 0 0 0 0 x26 0 0 0 0 0 0 0 0
Round 4 0 0 0 0 0 x38 ∗ 0 0 0 0 0 0 0 ∗ ∗
Round 5 0 0 0 x28 + x412 ∗ ∗ ∗ ∗ 0 0 0 0 ∗ ∗ ∗ 0
Round 6 δ5,14(P1, P3) x26 + x410 ∗ ∗ ∗ ∗ ∗ δ5,0(P1, P3) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Algorithm 2 Algorithm to find higher order differential trails for St(P)

1. Write St(P) = {P1, . . . , P2t+1}.
2. For all i, j where the difference Pi + Pj has Hamming weight 1, do the following:
3. Compute the differential trail of Pi + Pj in terms of the output bits of one of Pi.
4. Collect all the xu,v(Pi) + xu,v(Pj) = δu,v(Pi, Pj), where deg(δu,v) ≤ 1.
5. Let L be the set of all the linear equations for all pairs (i, j) considered above.
6. Perform Gaussian elimination on L.
7. Substitute the leading variables in the resulting linear equations into the differential trail equations for the pairs

(P1, P2), (P3, P4), . . . , (P2t+1−1, P2t+1).

8. Compute δij(St(P)) = δij(P1, P2) + δij(P3, P4) + . . .+ δP
2t+1−1

, P2t+1).

Table 7 The left half differential trail for S2(P)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Round 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Round 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Round 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Round 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Round 4 0 0 0 0 0 0 x26 0 0 0 0 0 0 0 0 ∗
Round 5 0 0 0 0 x26 + x38 ∗ ∗ ∗ 0 0 0 0 0 ∗ ∗ 0
Round 6 0 0 x38 + x410 ∗ ∗ ∗ ∗ δ5,14(P1, P3, P5, P7) ∗ 0 0 ∗ ∗ ∗ ∗ ∗

Table 8 The left half differential trail for S3(P)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Round 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Round 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Round 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Round 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Round 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Round 5 0 0 0 0 0 x26 ∗ ∗ 0 0 0 0 0 0 ∗ 0
Round 6 0 0 0 x38 ∗ ∗ ∗ δ5,14(P1, P3, . . . , P15) ∗ 0 0 ∗ ∗ ∗ ∗ ∗

Similarly, one can generalize this method to compute the differential trails for Si, i ≥ 2 upto
round 6. As the expression for δij(Si(P)) becomes more complicated for bigger i, we propose the
following algorithm to find the differential trails.

By applying this algorithm, we compute the differential trails for Si for i = 2, 3, 4 below.

Remark 9 The additional linear equations obtained by considering more plaintext pairs helps to
explain why more plaintext pairs are helpful in our attack. However, performing ElimLin to find
more linear equations with a large number of plaintexts is also more difficult as the matrices
involved in the Gaussian elimination becomes very large. As such, we have only applied Algorithm
2 to compute the differential trails upto S4(P) and up to round 6 for each differential trail.
Nonetheless, by performing experiments on random plaintexts and keys, we have the following
observations:

– δ5,j(S5(P)) = 0 for all j = 0, 1, . . . , 15.
– δ6,j(S6(P)) = 0 for all j = 0, 1, . . . , n− 1.
– δ7,j(S8(P)) is not a constant for all j = 0, 1, . . . , 15.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Improved Algebraic Attacks on Lightweight Block Ciphers 19

Table 9 The left half differential trail for S4(P)

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Round 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Round 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Round 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Round 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Round 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Round 5 0 0 0 0 0 0 0 ∗ 0 0 0 0 0 0 0 0
Round 6 0 0 0 0 x26 ∗ ∗ δ5,14(P1, P3, . . . , P31) ∗ 0 0 0 ∗ ∗ ∗ ∗

6.2 Improved algebraic attack

In this section, we demonstrate further improvements to our ElimLin-SAT attack and apply the
improved attack to Simon-32/64.

Thus far, we have only used the linear equations occurring in the differential trail (Table 1)
to aid the SAT solving process. We have seen from our experiments that such linear equations
have led to better performance of the SAT solvers in terms of solving more rounds of the ciphers.
An immediate improvement is to include other higher degree equations in the differential trail to
provide more relations among the variables. Essentially, we wish to consider equations with the
following characteristics:

– Equations that are not directly deduced from existing equations. For instance, for an equation
L, the equations xL or L+ x for a variable x may not be useful.

– Equations that will not result in very long clauses.

For example, referring to Table 1, we see that δ3,15 = x214δ2,7+x27δ2,14+δ2,14δ2,7+δ2,13+δ1,15 =
x214x

1
6 + 1. Equivalently, we have

x315(P) + x315(P ′) = x19(P)x21(P) + 1.

This is a short quadratic equation, which is not included for the ElimLin-SAT solving system.

This example motivates us to add on to the ElimLin-SAT process as follows.

– For any two plaintexts P and P ′ with Hamming distance 1, define new variables δij(P, P
′) =

xij(P) + xij(P
′). Let L be the set of all these linear equations.

– LetD(P, P ′) = {δi+1
j (P, P ′)+xij−1δ

i
j−8+xij−8δ

i
j−1+δij−1δ

i
j−8+δij−2+δi−1j : i = 0, 1, 2, . . . , r, j =

0, 1, 2, . . . , n− 1}.
– Find the set T of linear equations using ElimLin for the set

⋃
D(P, P ′) over all the pairs (P, P ′)

with Hamming distance 1.
– Consider the set X =

⋃
S(P,C) ∪

⋃
D(P, P ′) ∪ L ∪ T where the unions are taken over all the

plaintext/ciphertext pairs.
– Simplify X using the short linear equations (say of length at most 3).
– Convert the system into CNF and feed it to a SAT solver.

We performed experiments for Simon-32/64. Table 10 shows the timings of the SAT solvers
with and without the differential equations. Note that we used the same plaintext differences and
fixed key bits (for 13 and more rounds) as in Section 3. For each experiment, we performed 20
different random instances and record the average SAT solver timings below.

7 Discussion and conclusion

In this paper, we proposed a more efficient method to solve algebraic equations with SAT solvers.
When combined with chosen ciphertext attacks, our technique enhanced the current state-of-the-

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

20 S-L. Yeo and al.

Table 10 Experimental results on Simon-32/64 for the the improved attack by adding the differential equations

Round With differential equations Without differential equations
No. of (P,C) &
Key bits fixed

Timing #(P, C) & #
Key bits fixed

Timing

11 (4, 0) 28 (6, 0) 1.7
12 (8, 0) 59 (12, 0) 48.9
13 (16, 0) ∼ 8 hours (14, 6) 86.8
13 (8, 4) 74 (16, 6) 17
14 (8, 12) 58 (16, 16) 51.4
15 (8, 20) 83 (16, 24) 328.2
16 (8, 28) 60 - -

art of algebraic cryptanalysis on lightweight block ciphers. We demonstrated the effectiveness of
our approach by improving the algebraic attack on both Present cipher and Simon cipher.

To summarize, the main components of our framework comprise the following:

– Construct a differential trail table to relate a difference bit in terms of intermediate input bits
as well as difference bits of preceding rounds. Our framework is more effective such a differential
trail table contains many linear relations.

– Use of ElimLin to find linear relations among the variables to be added as additional clauses
for the SAT solvers;

– A good representation of the cipher, typically involving short equations with small degrees.

Finally, we remark that unlike prior work on algebraic differential cryptanalysis that adds
linear equations representing the input and output differences of a differential characteristic with
a certain probability, our approach considers the entire differential trail and is independent on the
associated probability.

Following the promising results from this work, several directions can be explored. First, we
have only considered a class of weak keys for our experiments on Simon in this paper. One can
certainly generalize our attacks to generic keys and estimate the complexities of the generic attacks.
Next, it will be interesting to apply our techniques, possibly with some adaptations, to block
ciphers such as DES or AES. Finally, we have seen that adding in differential equations is helpful
to speed up the SAT solving process. As such, it will be interesting to investigate the effectiveness
of including short higher order differential equations with degrees greater than 2.

References

1. Albrecht, M.R., Cid, C.: Algebraic techniques in differential cryptanalysis. In: O. Dunkelman (ed.) Fast Software
Encryption, 16th International Workshop, FSE 2009, Leuven, Belgium, February 22-25, 2009, Revised Selected
Papers, pp. 193–208. Springer Berlin Heidelberg, Berlin, Heidelberg (2009)

2. Bard, G.V., Courtois, N., Jefferson., C.: Efficient methods for conversion and solution of sparse systems of
low-degree multivariate polynomials over gf(2) via sat-solvers. IACR Cryptology ePrint Archive 2007, 24
(2007)

3. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The simon and speck families
of lightweight block ciphers. IACR Cryptology ePrint Archive (2013). URL https://eprint.iacr.org/2013/404

4. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satisfiability: Volume 185 Frontiers
in Artificial Intelligence and Applications. IOS Press, Amsterdam, The Netherlands, The Netherlands (2009)

5. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In: Proceedings of the 10th Annual
International Cryptology Conference on Advances in Cryptology, CRYPTO ’90, pp. 2–21 (1991)

6. Biryukov, A., Roy, A., Velichkov, V.: Differential analysis of block ciphers simon and speck. In: FSE (2014)
7. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J., Seurin, Y., Vikkelsoe,

C.: PRESENT: An ultra-lightweight block cipher. Springer (2007)
8. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symbolic Com-

put. 24(3-4), 235–265 (1997). DOI 10.1006/jsco.1996.0125. URL http://dx.doi.org/10.1006/jsco.1996.0125.
Computational algebra and number theory (London, 1993)

9. Buchberger, B.: Ein algorithmus zum auffinden der basiselemente des restklassenringes nach einem nulldimen-
sionalen polynomideal. Dissertation der Universitat Innsbruck (1965)

10. Cannière, C.D., Preneel, B.: Trivium. In: New Stream Cipher Designs - The eSTREAM Finalists, pp. 244–266
(2008)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Improved Algebraic Attacks on Lightweight Block Ciphers 21

11. Courtois, N., Bard, G.V., Wagner, D.A.: Algebraic and slide attacks on keeloq. In: FSE, Lecture Notes in
Computer Science, vol. 5086, pp. 97–115. Springer (2008)

12. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multi-
variate polynomial equations. In: Advances in Cryptology–EUROCRYPT 2000, pp. 392–407. Springer (2000)

13. Courtois, N., Mourouzis, T., Song, G., Sepehrdad, P., Susil, P.: Combined algebraic and truncated differential
cryptanalysis on reduced-round simon. In: SECRYPT 2014 - Proceedings of the 11th International Conference
on Security and Cryptography, Vienna, Austria, 28-30 August, 2014, pp. 399–404 (2014)

14. Courtois, N.T., Bard, G.V.: Algebraic cryptanalysis of the data encryption standard. In: Cryptography and
Coding, pp. 152–169. Springer (2007)

15. Courtois, N.T., Meier, W.: Algebraic attacks on stream ciphers with linear feedback. In: Advances in
Cryptology–EUROCRYPT 2003, pp. 345–359. Springer (2003)

16. Courtois, N.T., Nohl, K., O’Neil, S.: Algebraic attacks on the crypto-1 stream cipher in mifare classic and
oyster cards (2008). URL http://eprint.iacr.org/2008/166. N.courtois@ucl.ac.uk 13983 received 13 Apr 2008,
last revised 14 Apr 2008

17. Courtois, N.T., Patarin, J.: About the xl algorithm over gf (2). In: Topics in Cryptology–CT-RSA 2003, pp.
141–157. Springer (2003)

18. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems of equations. In: Advances
in Cryptology–ASIACRYPT 2002, pp. 267–287. Springer (2002)

19. Courtois, N.T., Sepehrdad, P., Sušil, P., Vaudenay, S.: Elimlin algorithm revisited. In: Fast Software Encryption,
pp. 306–325. Springer (2012)

20. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5(7), 394–397
(1962)

21. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM 7(3), 201–215 (1960)
22. Een, N., Sorensson, N.: An extensible sat-solver. In: E. Giunchiglia, A. Tacchella (eds.) SAT, Lecture Notes in

Computer Science, vol. 2919, pp. 502–518. Springer (2003)
23. Faugere, J.C.: A new efficient algorithm for computing gröbner bases (f 4). Journal of pure and applied algebra

139(1), 61–88 (1999)
24. Faugere, J.C.: A new efficient algorithm for computing gröbner bases without reduction to zero (f 5). In:

Proceedings of ISSAC, pp. 75–83. ACM (2002)
25. Fengjuan, C., Xiao-Shan, G., Chunming, Y.: A characteristic set method for solving boolean equations and

applications in cryptanalysis of stream ciphers*. Journal of Systems Science and Complexity 21(2), 191–208
(2008)

26. Ganesh, V., Liang, J.H.: Maplesat. https://sites.google.com/a/gsd.uwaterloo.ca/maplesat/. Accessed: 2017-
11-28

27. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained environments. Int. J. Wire.
Mob. Comput. 2(1), 86–93 (2007)

28. Huang, Z., Sun, Y., Lin, D.: On the efficiency of solving boolean polynomial systems with the characteristic
set method. arXiv preprint arXiv:1405.4596 (2014)

29. Matsui, M.: Linear cryptanalysis method for des cipher. In: Workshop on the Theory and Application of
Cryptographic Techniques on Advances in Cryptology, EUROCRYPT ’93, pp. 386–397 (1994)

30. Murphy, S., Robshaw, M.J.B.: Essential algebraic structure within the AES. In: Advances in Cryptology -
CRYPTO 2002, 22nd Annual International Cryptology Conference, Santa Barbara, California, USA, August
18-22, 2002, Proceedings, pp. 1–16 (2002)

31. Nakahara Jr, J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (hull) and algebraic cryptanalysis of the block
cipher present. In: Cryptology and Network Security, pp. 58–75. Springer (2009)

32. Raddum, H.: Algebraic analysis of the simon block cipher family. In: Progress in Cryptology - LATINCRYPT
2015 - 4th International Conference on Cryptology and Information Security in Latin America, Guadalajara,
Mexico, August 23-26, 2015, Proceedings, pp. 157–169 (2015)

33. Sage: An ANF to CNF Converter using a Dense/Sparse Strategy. http://doc.sagemath.org/html/en/reference/-
sat/sage/sat/converters/polybori.html. Accessed: 2017-11-28

34. Sepehrdad, P.: Statistical and algebraic cryptanalysis of lightweight and ultra-lightweight symmetric primitives.
Ph.D. thesis, ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE (2012)

35. Shimoyama, T., Kaneko, T.: Quadratic relation of s-box and its application to the linear attack of full round
DES. In: Advances in Cryptology - CRYPTO ’98, 18th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 23-27, 1998, Proceedings, pp. 200–211 (1998)

36. Soos, M.: Cryptominisat 5.0.1. https://www.msoos.org/2016/09/cryptominisat-5-0-1-released-with-mit-
license/. Accessed: 2017-11-28

37. Soos, M., Nohl, K., Castelluccia, C.: Extending sat solvers to cryptographic problems. In: O. Kullmann (ed.)
SAT, Lecture Notes in Computer Science, vol. 5584, pp. 244–257. Springer (2009)

38. Yeo, S.L., Li, Z., Khoo, K., Low, Y.B.: An enhanced binary characteristic set algorithm and its applications
to algebraic cryptanalysis. In: Applied Cryptography and Network Security - 15th International Conference,
ACNS 2017, Kanazawa, Japan, July 10-12, 2017, Proceedings, pp. 518–536 (2017)

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

