
1 

 

An invertible crystallographic representation for general inverse 
design of inorganic crystals with targeted properties 

Zekun Ren1,2,*, Siyu Isaac Parker Tian1,2,*, Juhwan Noh3, Felipe Oviedo4,13, Guangzong Xing5, Jiali Li6, 
Qiaohao Liang7, Ruiming Zhu8,9, Armin G.Aberle2, Shijing Sun4,14, Xiaonan Wang6,15, Yi Liu10, 
Qianxiao Li11, Senthilnath Jayavelu12, Kedar Hippalgaonkar8,9, Yousung Jung3, Tonio Buonassisi1,4 
 
1Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and Technology (SMART), Singapore 
138602, Singapore 
2Solar Energy Research Institute of Singapore (SERIS), National University of Singapore, Singapore 117574, Singapore 
3Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and 
Technology (KAIST), 291 Daehakro, Daejeon 34141, Korea 
4Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA 
5Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa 904-0495, Japan 
6Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, 
Singapore 
7Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, 
USA 
8Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A∗STAR), Singapore 
138634, Singapore 
9Department of Materials Science and Engineering, Nanyang Technological University, Singapore 117575, Singapore 
10Materials Genome Institute (MGI), Shanghai University, Shanghai 200444, China 
11Department of Mathematics, National University of Singapore, Singapore 117543, Singapore 
12Institute for Infocomm Research, Agency for Science, Technology and Research (A∗STAR), Singapore 138632, 
Singapore 
 

*These authors contributed equally 
13Present address: Microsoft AI for Good, Redmond, WA 98052, USA 
14Present address: Toyota Research Institute, Los Altos, CA 94022, USA 
15Present address: Department of Chemical Engineering, Tsinghua University, Beijing 100084, China 

Correspondence to: Zekun Ren <dannyzekunren@gmail.com>, Tonio Buonassisi <buonassi@mit.edu>. 

 

Abstract 

Realizing general inverse design could greatly accelerate the discovery of new materials with 
user-defined properties. However, state-of-the-art generative models tend to be limited to a 
specific composition or crystal structure. Herein, we present a framework capable of general 
inverse design (not limited to a given set of elements or crystal structures), featuring a generalized 
invertible representation that encodes crystals in both real and reciprocal space, and a property-
structured latent space from a variational autoencoder (VAE). In three design cases, the 
framework generates 142 new crystals with user-defined formation energies, bandgap, 
thermoelectric (TE) power factor, and combinations thereof. These generated crystals, absent in 
the training database, are validated by first-principles calculations. The success rates (number of 
first-principles-validated target-satisfying crystals/number of designed crystals) ranges between 
7.1% and 38.9%. These results represent a significant step toward property-driven general inverse 

mailto:dannyzekunren@gmail.com
mailto:buonassi@mit.edu


2 

 

design using generative models, although practical challenges remain when coupled with 
experimental synthesis.  

Introduction 

A common quest in materials research is to create a new material with a combination of user-
specified properties, which is not present in any materials-property database. Historically, we may 
recruit an experienced scientist to use their intuition, to create a list of candidate compounds using 
heuristics (e.g., elemental substitution following a given set of rules). With the advent of materials-
property databases, materials screening became commonplace. Theoretical screening of solid-
state materials using elemental substitution and mixing has allowed for the discovery of several 
crystals with user-defined functional properties, e.g., perovskite materials with tailored 
bandgaps.1-6 However, even under the high-performance computing (HPC) framework, the 
computational cost of density functional theory (DFT) calculations is high, prohibiting an 
exhaustive search of the theoretical materials space.7,8 Consequently, the leading databases 
contain on the order of 105–106 calculations for solid materials9-11  — only a tiny fraction of the 
number of stoichiometric inorganic compounds believed to be possible (order 1010 considering 
quaternary crystals).12,13 

To overcome these limitations, machine-learning (ML) methods have been developed to 
inversely design crystalline solids. (Inverse design refers to the act of a user defining target material 
properties and inferring a material that meets target properties, e.g., by using an algorithm).14,15 
For the ML model, there are two major approaches to inversely design crystalline solids used today: 
global optimization and generative models. Global optimization, also called “directed 
evolution,” involves modifying known or randomly enumerated compounds using a set of rules to 
design new compounds; their exploratory capacity is limited by the initial selection of structures 
and elements. Generative models, which learn a given data distribution, directly model all training-
set materials into a probabilistic representation, from which new materials can be sampled.  

Two most commonly used generative models in inverse design of solid-state materials are 
generative adversarial network (GAN)16 and variational autoencoder (VAE)17, and the key enabler 
of both, on top of the algorithm itself, is an invertible crystallographic representation. 
By “invertible”, we refer to the both-way conversion from materials to representation, and vice 
versa. Especially, the conversion from representation to materials (the inverse of the one-way 
conversion from material to representation, enabling property prediction) requires a materials 
representation that enables the algorithm to extract necessary crystallographic information, for 
instance, the site location and occupancy information contained in a crystallographic information 
file (CIF), an input file format of choice for DFT calculations. 

Because of the difficulty in creating a general invertible crystallographic representation, early 
demonstrations of inverse design using generative models were often limited to a fixed subset of 
elements5,6,13,18,19 or crystal structures20-22. We observe that there lacks a general inverse design 
framework using generative models for inorganic crystals in prior art. Our definition of “general 
inverse design” is the ability to produce a prediction of a specific material (both chemistry and 
structure) on the basis of a user-specified target property (or properties), i.e., solving the inverse 
problem of property prediction. To perform inverse design using ML, as opposed to human 
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intuition, we posit that a materials representation is required that must include two key elements: 
(1) a representation that incorporates both structure and chemical composition into the 
descriptor (both structure and composition varying), and (2) a representation that is invertible, 
making it amenable to solving the inverse problem (property → structure + chemistry). Current 
invertible representations (Figure 1, and Table S1) are representative of either only specific 
compositional spaces (not composition varying), such as VxOy space5,6,13,18,19, or only specific 
structural spaces (not structure varying), such as cubic structures.20-22 Korolev et al. proposed a 
spectrum representation of composition + powder X-ray diffraction (XRD) pattern;23 although 
allowing variation of both composition and structure, the conversion from representation to 
material, i.e., the construction of a unit cell from the composition + powder XRD pattern, is hard 
to achieve with algorithmic automation, but may still be possible for experienced human experts 
(thus our rating of “Limited/No” for its invertibility in Table S1). An outstanding challenge in the 
field is to develop an invertible crystallographic representation that accesses various chemical 
systems (composition varying) and various crystallographic space groups (structure varying), thus 
enabling general (and property-driven) inverse design. 

 

Figure 1. Novelty of the FTCP inverse design framework (right), compared to prior art (left) 

The FTCP framework allows for both composition and structure to vary, enabling general and property-driven inverse 
design. See also Table S1. 

In this work, we propose a framework for general inverse design of inorganic crystals, which is 
orders-of-magnitude faster than naive screening of the entire chemical space. The framework 
features two main components: (1) A generalized crystallographic representation, which is both 
composition and structure varying. The representation comprises (A) real-space features, 
containing CIF-like information, thus guaranteeing the invertibility, and (B) reciprocal-space 
features, a reciprocal-space formulation of crystal properties similar to the structure-factor 
(Fourier transform) calculation in XRD, as an additional featurizer. The latter is inspired by Ziletti 
et al.’s representation of 2D diffraction fingerprint,24 which leverages the more compact crystal 
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periodicity and symmetries in the reciprocal space. (2) A VAE, with an extra target-learning branch 
connected to the latent space, mapping latent vectors/points to user-specified property(ies); the 
encoder encodes the crystals in the training set into a continuous probabilistic latent space, and 
the decoder decodes any vector in the latent space to its corresponding crystals (sampling the 
latent space for designing new crystals); the target-learning branch during training will jointly 
organize the latent space to reflect a continuous change in property, i.e., a property gradient, and 
we term thus-formed latent space “property structured.” We name both the generalized 
invertible representation (1) and the overall framework (1)+(2) after the reciprocal-space 
featurizer, as the Fourier-transformed crystal properties (FTCP) framework (sometimes simply 
referred to as FTCP). 

Using FTCP, we demonstrate three inverse design cases with design targets from single to 
multiple, from simple to complex: (1) case 1, designing for various targeted formation 
energies, Ef (ranging from −0.3 to −0.7 eV/atom); (2) case 2, designing for bandgap, Eg = 1.5 eV, 
while keeping Ef < −1.5 eV/atom (a desirable bandgap target for photovoltaic and optoelectronic 
applications); (3) case 3, designing for thermoelectric (TE) power factor (an excited-state property) 
to be as large as possible, while keeping 0.3 < Eg < 1.5 eV and Ef < 0 eV/atom (a desirable power 
factor target for high-efficiency TE materials and a desirable bandgap range for a low- and 
medium-temperature range). The designed crystals are unique, i.e., not in the Materials Project9 
database (from where our training and test sets derive), and they span a variety of chemistries 
and crystal structures (i.e., both composition and structure varying). We “validate” the designed 
crystals using DFT structural relaxation followed by property prediction using first-principles 
calculations and define a designed crystal as “successful” if it relaxes properly and achieves the 
user-specified target property to within a given range. To compare FTCP against a baseline, we 
calculate the “random success rate” as the probability of finding a material with the user-specified 
target property by randomly picking from the training set, and we quantify the improvement of 
FTCP over random. 

A summary of main results presented in the paper follows: (1) case 1, FTCP achieves success 
rates (number of target-satisfying designed crystals/number of total designed crystals) from 14.3% 
to 38.9%, scoring improvement over random from 38.8% to 270%; (2) case 2, success rate is 36.8%, 
achieving improvement over random of 560%; (3) case 3, FTCP designs two unique crystals that 
achieve comparable peak power factors with the state-of-the-art TE material, germanium telluride 
(GeTe), scoring a success rate of 7.1% (improvement over random not quantified due to the lack 
of complete power factor labels). 

With the above cases, we demonstrate the usefulness of FTCP and validate using first-principles 
calculations, as is common practice in prior art (references are detailed in the 
section synthesizability challenge). We posit that a complete experimental validation is outside of 
scope for this study, but to lay the groundwork toward the experimental-synthesis goal of inverse 
design, we explore adding a näive synthesizability metric, i.e., the existence or absence of an 
Inorganic Crystal Structure Database (ICSD) entry (previously explored by Jang et al.),25,26 to the 
target-learning branch. This organizes the property-structured latent space according to a 
synthesizability metric, which can direct generative-design sampling toward more favorable 
regions (of higher likelihood to possess an ICSD entry). We conclude with a brief discussion of the 
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invariance challenge faced by structure-conscious invertible crystallographic representations, 
including the FTCP representation. 

Results and Discussion 

Inverse Design Framework, FTCP 

Representation 

Representing an infinitely repeating 3D crystal is hard, compared with representing small 
organic molecules, due to the periodicity, the complex geometrical symmetries (230 space groups 
for 3D periodic crystals), and the vast chemical space (up to 81 nonradioactive elements). To 
sufficiently capture this variety of crystals while satisfying invertibility, we propose a 
crystallographic representation of real-space CIF-like features combined with reciprocal-space 
Fourier-transformed features (Figure 2A). 
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Figure 2. FTCP framework, representation + model 

(A) Representation: The invertible FTCP representation contains both real- and reciprocal-space features. Real-space 
contain CIF-like features, such as the element matrix (describing constituent elements), the lattice matrix (describing 
lattice parameters), the site coordinate matrix (describing fractional coordinates of sites), the site occupancy matrix 
(describing elemental occupancy per site), as well as the elemental property matrix (elemental descriptors). 
Reciprocal-space features project the elemental descriptor Zi (i for each site) for all the N sites in the unit cell along 
various spatial frequencies, hkl (Miller indices) via spatial discrete Fourier transform (with a data preprocessing of 
𝑗

2
ln where j is the imaginary unit) to form the FTCP matrix. The distance of each hkl (k point) from (000) (light-gray 

row, with “dhkl”, in reciprocal-space features) is also recorded and prepended to the FTCP matrix (red box in reciprocal-
space features). (GaAs unit cell is used as an example for illustration). 
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(B) Model: the VAE architecture using the invertible FTCP representation for inverse design. On top of the encoder + 
decoder architecture of a normal VAE, the latent space is also connected to a target-learning branch for property 
mapping, reflecting a property gradient(s) (property-structured latent space). The latent space is visualized by plotting 
two dimensions (the third and the 12th) out of a total of 256. A detailed discussion of the visualization can be found in 
section S2.1 in supplemental information. 

The real-space features contain necessary information for unit cell construction in 2D matrix 
form, namely a vertical concatenation of: 

• Element matrix, where each column is a one-hot vector representing a constituent element. 

• Lattice matrix, where the lattice parameters, a, b, c, α, β, and γ, form a 2 × 3 matrix. 

• Site coordinate matrix, where each row vector contains the fractional coordinate of a site 
(vacant sites have all-zero entries, namely zero padding). 

• Site occupancy matrix, or site index matrix, where each row is a one-hot vector for a site 
indicating which constituent element occupies the site (vacant sites have all-zero entries). 

• Elemental property matrix, where each column is an elemental property vector/elemental 
descriptor Z (equivalent to the atom feature vector used in the crystal graph convolutional 
neural network (CGCNN)27 representation) of the constituent element, including group 
number, period number, electronegativity, covalent radius, and valence electrons, among 
others. 

The real-space features guarantee invertibility because if the real-space features are set, i.e., filled 
with values, a crystal can always be constructed. The resultant crystal may not valid, but there is 
always a corresponding resultant crystal. Analogous to a CIF, the values in the real-space 
representation always correspond to a specific crystal, although the crystal itself may not be valid. 

The reciprocal-space (also called k-, momentum-, frequency-, and Fourier-space) features 
contain the spatial Fourier-transformed elemental property vectors (the transformed property is 
termed crystal property). The formulation of the reciprocal-space features roots in the domain 
knowledge of solid-state physics. Atoms in a crystal are arranged in a periodic pattern. Bloch's 
theorem establishes that the wave function can be expressed as the product of a plane wave and 
a function that has the same periodicity as the crystal.28 The spatial periodicity of the atomic 
arrangement, analogous to the temporal periodicity of a signal, can be analyzed in the frequency 
domain with Fourier transform, or in materials science terms, the reciprocal space. We build upon 
the discrete spatial Fourier transform used in the structure factor calculation in scattering physics 
and XRD to reach Equation 1: 

1. Instead of transforming the atomic scatter factor to the reciprocal space, we substitute with 
the elemental property vector (projecting elemental properties to obtain crystal properties). 

2. Apply a preprocessing (
𝑗

2
ln  increases the prediction accuracy for the formulations 

attempted in this study; see details in section S2.2 in supplemental information). 

𝐅ℎ𝑘𝑙 =  ∑ 𝒁𝒊 ∙
𝑗

2
ln (𝑒−𝑗2𝜋(ℎ𝑥𝑖+𝑘𝑦𝑖+𝑙𝑧𝑖)) 

𝑁

𝑖=1

= ∑ 𝒁𝒊

𝑁

𝑖=1

∙ 𝜋(ℎ𝑥𝑖 + 𝑘𝑦𝑖 + 𝑙𝑧𝑖) (Equation 1) 

where hkl are the Miller indices/spatial frequencies, Zi is the elemental property vector for 
site i (total N sites in the unit cell), xiyizi are the fractional coordinates of site i, and j is the 
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imaginary unit. The FTCP, Fhkl, is calculated for 59 different combinations of hkl (k points), which, 
as column vectors, concatenate horizontally to form an FTCP matrix. Upon prepending the 
distance of the k points from (0, 0, 0) to the FTCP matrix, the reciprocal-space features (matrix) 
become complete. Horizontal concatenation of the real-space features (matrix) and the 
reciprocal-space ones (with zero padding) forms the FTCP crystallographic representation. (The 
reciprocal-space features act as an additional featurizer, which improves the reconstruction 
accuracy of the VAE + target-learning branch model. See details in section S2.3 in supplemental 
information.) 

Model 

After obtaining the invertible FTCP representation (2D matrix), we construct a continuous 
property-structured latent space, which allows for sampling of new crystals using a VAE. The VAE 
comprises an encoder, a decoder, and a target-learning branch, as shown in Figure 2B. The 
encoder compresses the FTCP representation into a point probabilistically in the latent space of 
reduced dimension (with total dimensions = 256), namely the encoder outputs zmean and zvariance. 
The decoder learns to sample with zvariance around the latent point zmean and to decode this vicinity 
of zmean back to the original FTCP representation. Naturally, the training for better reconstruction 
(minimizing reconstruction loss) results in nearness of latent points of similar FTCP representations, 
namely a cluster-forming behavior in the latent space for similar inputs. We also implement a 
standard VAE Kullback-Leibler (KL) loss to promote dense-packing of latent points around the 
center of the latent space, especially for those of very different FTCP representations, by 
encouraging zmean and zvariance to follow that of a unit Gaussian. The reconstruction loss and the KL 
loss forms a stand VAE, where the input is embedded to a continuous probabilistic latent 
space — the cluster forming of the probabilistic points results in continuous change in the 
decoded FTCP representation, and the dense packing ensures the latent space does not contain 
void areas without encoded latent points. Overall, the two losses ensure a continuous latent space, 
which allows for easy sampling between known crystals (encoded latent points of training data). 
In addition, we add a feedforward target-learning branch to map latent points to certain properties, 
namely there is an additional property-mapping loss. (The target-learning branch handles multiple 
target properties by outputting a vector, instead of a scalar, containing entries for each property. 
Thus, the property-mapping loss is the overall loss across different properties.) This additional loss 
further encourages latent points to be near when they possess similar property values, thus 
introducing a property gradient (change) in the latent space (organizing latent points further 
according to the property). We term the obtained latent space “property structured.” The overall 
loss of the VAE is a weighted sum of the three losses, i.e., the reconstruction loss, the KL loss, and 
the property-mapping loss. The detailed architecture and the hyperparameters of the model are 
recorded in the section generative model and section S2.4. 

Design from trained model (sampling and postprocessing) 

To sample from the trained property-structured latent space, we adopt a local perturbation (Lp) 
strategy, similar to that used by the decoder during training. We identify the latent points of 
target-satisfying crystals in the training set, and we sample around the latent points with a scaled 
(0.3–3) unit Gaussian noise, i.e., a Gaussian noise with scaled variance. The scale controls a 
tradeoff between exploitation and exploration: with too small a scale, the sampled points fall too 
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close to known crystals, displaying high reconstruction accuracy with low novelty; with too large a 
scale, the sampled points are more scattered, displaying high novelty with low reconstruction 
accuracy. Thus, our choice of the scale is determined through trial and error to maximize 
exploration, while ensuring sufficient exploitation by taking the largest value that yields structure 
design errors <20%, discussed in greater details in section S2.5 in supplemental information. Apart 
from Lp, we also explore two other sampling strategies, spherical linear interpolation29 (Slerp) and 
global perturbation (Gp), in section S2.5 in supplemental information. We deem Lp to be the most 
suitable and high-achieving strategy in the setting of property-driven sampling, and we 
consistently use Lp in the design (use) cases in this study. 

The decoding from sampled latent points results in a decoded/reconstructed FTCP 
representation (real-space + reciprocal-space features). The reconstruction of a unit cell lies in 
postprocessing the decoded real-space features, which entails the processing of the element 
matrix (one-hot encoded), the lattice matrix, the site coordinate matrix, and the site occupancy 
matrix (one-hot encoded). For one-hot encoded matrices, the respective one-hot vector is 
obtained by setting the maximum value in the vector to one and the rest to zero. For the site 
occupancy matrix, to distinguish empty sites due to zero padding, we enforce a threshold (0.05) 
such that empty sites are where all decoded values in the vector are below the threshold. Thus, 
empty sites will have all-zero vectors in the site occupancy matrix, while valid sites will have one-
hot vectors after postprocessing. We then use the site occupancy matrix to ignore the decoded 
coordinates for empty sites. 

Workflow 

Our workflow for the design cases (applying FTCP) in this study is shown in Figure 3, where we 
have four stages: (1) We define the target property of the intended material, (2) we design from 
trained model (performing sampling and postprocessing) and obtain a number of FTCP-designed 
candidates, (3) we pass these candidates through structural relaxation (performed by DFT in our 
study; in the future, this may be performed by an ML surrogate model to approximate the speed 
of FTCP compound generation), and we remove the nonconverged, repeated, and invalid 
structures, e.g., with overlapping atoms. (DFT structural relaxation is a way to reduce errors in the 
construction of designed crystals. We discuss the sources of error and the need for structural 
relaxation for designed crystals in section S2.6 in supplemental information.) (4) We perform first-
principles calculation(s) to verify the property(ies) of the designed candidates and retain those 
that satisfy the design target within a user-specified margin of error (tolerance). 



10 

 

 

Figure 3. Workflow of the FTCP framework in design cases 

Note that structural relaxation can be performed using DFT (our study), or in the future, an ML surrogate model. We 
define the following metrics: validity rate, percentage of FTCP-designed candidates successfully passing through 
structural relaxation ([no. of candidates exiting stage 3]/[no. of candidates exiting stage 2]), and success rate, 
percentage of FTCP-designed candidates confirmed to have the user-specified target property(ies) to within the 
specified margin of error ([no. of candidates exiting stage 4]/[no. of candidates exiting stage 2]). 

We then define three metrics to quantify the performance of FTCP: (1) Validity rate, defined to 
be the percentage of FTCP-designed candidates successfully passing through the DFT structural 
relaxation ([no. of candidates exiting stage 3]/[no. of candidates exiting stage 2]). (2) Success rate, 
defined to be the percentage of FTCP-designed candidates confirmed to have the user-specified 
target property within tolerance ([no. of candidates exiting stage 4]/[no. of candidates exiting 
stage 2]). (3) Improvement over random, where random success rate is the probability of finding 
a material with the user-specified target property by randomly picking it from the training + test 
datasets [(FTCP success rate – random success rate)/random success rate]. We approximate the 
random success rate with the percentage of target-satisfying crystals in the training + test datasets. 

With the above workflow, we apply FTCP in three design cases: 

1. Design for formation energy, Ef: We design based on ternary crystals for 
four Ef targets, −0.5, −0.3, −0.6, and −0.7 eV/atom, as these Ef are the most prevalent in 
the database we use for training (Materials Project9). To calculate the “success 
metric,” we define a tolerance of ±0.06 eV/atom. 

2. Design for bandgap, Eg, with Ef constraint: We design based on ternary and quaternary 
crystals for a design target Eg = 1.5 eV, which is of interest both for solar cells (near the 
maximum of the detailed balance efficiency limit for single-junction devices30 ), and for 
optoelectronic devices (e.g., LEDs). We also set a negative Ef (<−1.5 eV/atom) target as 
a proxy for the stability of designed crystals. To calculate the “success metric,” we define 
a tolerance of ±0.3 eV for Eg and ±0.06 eV/atom for Ef. 

3. Design for TE power factor, with Eg and Ef constraints: We design based on ternary and 
quaternary crystals for a power factor (heat-to-electricity conversion efficiency) to be as 
large as possible. We also set a bandgap target between 0.3 and 1.5 eV, desirable for 
low- and medium-temperature range, as well as a negative (<0 eV/atom) formation 



11 

 

energy, again as a proxy for stability. To calculate the “success metric,” we compare the 
first-principles calculated power factor to the state of the art TE material, GeTe, and 
define a tolerance of ±0.3 eV for Eg and ±0.06 eV/atom for Ef. 

After obtaining the designed candidate CIFs, according to our workflow, we pass the designed 
candidates through DFT structural relaxation to remove nonconverged, repeated, and invalid 
structures (validity rate is calculated). We then apply DFT calculations for Ef, and Eg, and Boltzmann 
transport properties (BoltzTraP31 ) calculations for power factor. (The details of the structural 
relaxation, and the first-principles calculation of properties, are described in sections S3.2 and S3.3, 
and we provide a list of validated FTCP-designed crystals in S3.1.) We verify the designed 
candidates to retain those with target-satisfying properties within aforementioned tolerances 
(success rate is calculated). 

We summarize the performance of the design cases in Table 1 using the metrics defined above 
(detailed descriptions of each design case are in the following section applying FTCP: three design 
cases validated by first-principles calculations). 

Table 1. Performance of three design cases using FTCP 

 Case 1 Case 2 Case 3 

Description Formation energy 
(±0.06 eV/atom tolerance) 

Bandgap 
(±0.3 eV tolerance) 

with formation 
energy constraint 

Thermoelectric power 
factor 

(as high as possible) 
with bandgap and 
formation energy 

constraints 

Metrics 
Ef = −0.5 
eV/atom 

Ef = −0.3 
eV/atom 

Ef = −0.6 
eV/atom 

Ef = −0.7 
eV/atom 

Eg = 1.5 eV 
Ef < −1.5 eV/atom 

Power factor as large 
as possible 

0.3 eV ≤  Eg ≤ 1.5 eV 
Ef < 0 eV/atom 

Validity Rate 
77.8% 

(14/18) 
81.0% 

(17/21) 
96.4% 

(27/28) 
92.9% 

(26/28) 
84.2% 

(16/19) 
42.9% 

(12/28) 

Success Rate 
(FTCP) 

38.9% 
(7/18) 

14.3% 
(3/21) 

17.9% 
(5/28) 

21.4% 
(6/28) 

36.8%  
(7/19) 

7.1% 
(2/28) 

Success Rate 
(Random)*† 

10.5% 
(2781/26

402) 

10.3% 
(2732/26

402) 

9.6% 
(2522/26

402) 

8.3% 
(2183/26

402) 

5.5% 
(3035/54925) 

–‡ 

Improvement 
over 

Random† 
270% 38.8% 86% 150% 560% –‡ 

*approximated by the percentage of target-satisfying crystals in the dataset (training + test). 

†calculated with an updated version of Materials Project accessed on 14 Sep 2021. (Materials Project has updated 
since our design cases, which accessed Materials Project on 22 Jun 2020.) 

‡not calculated for case 3 because of the lack of calculated power factor values for every crystal and the use of a 
qualitative criterion, “power factor as large as possible”. 
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We observe a rule of thumb that with more design targets (increased design difficulty), the 
percentage of target-satisfying crystals in the dataset (random success rate) decreases, and the 
validity rate and the success rate also both decrease because there are more losses (property-
mapping losses) to optimize. As the inverse design problem becomes more complex (e.g., the 
number of target properties increases, the tolerance tightens), the usefulness of FTCP is expected 
to grow; see the improvement over random for case 2 versus case 1, for example. 

There are two sources of error reducing success rate: one is from imperfect positioning of latent 
points and imperfect reconstruction (KL loss and reconstruction loss), and one is from imperfect 
property mapping (property-mapping loss), which can yield three scenarios of error: (1) The 
validity of the decoded crystal is too low that the geometry is wrong or the structural relaxation 
fails. (2) The decoded crystal successfully relaxes, but the resultant crystal is not what is intended 
after relaxation (thus, the first-principles calculation of the resultant crystal yields the incorrect 
property value). (3) The property mapping is not accurate, resulting in an inaccurate property 
gradient (thus, the first-principles calculation yields an incorrect property value). Scenarios 2 and 
3 can also happen at the same time. We posit that although a high success rate is ideal, the main 
achievement of FTCP is realizing a nonzero success rate of general inverse design. Many research 
problems only require one or a few successful candidate(s); the minimum success rate is therefore 
on the order of the inverse of the throughput of the synthesis tool. 

Applying FTCP: Three design cases validated by first-principles calculations 

Case 1: Design for formation energy and case 2: Design for bandgap (with formation-
energy constraint): Case studies for photovoltaic and optoelectronic applications 

In the first design case (case 1) of the FTCP framework, we design new crystals based on ternary 
crystals with target Ef = −0.5 eV/atom. As our dataset (training + test), we select the ternary 
crystals of ≤20 sites with energy above hull <0.08 eV/atom in the Materials Project database. 
Examples of six FTCP-designed 3D crystals with targeted Ef after DFT relaxation are shown in 
Figure 4. These crystals cannot be found in the Materials Project database, indicating their 
uniqueness. We perform DFT calculations of structural relaxation and formation energy using 
GGA(+U). The DFT-calculated formation energies are shown in Figure 5A. Seven out of 18 (38.9%) 
have Ef meeting the target −0.5 eV/atom (within a user-specified tolerance of ±0.06 eV/atom). 
There are in total eight different crystal structures with more than 30 different elements in those 
18 crystals (detailed in section S4.1 in supplemental information), demonstrating that the FTCP 
framework can access a wide range of structures and chemistries. 
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Figure 4. Examples of FTCP-designed crystals 

The designed crystals are with targeted Ef = −0.5 eV/atom after DFT relaxation. See also Figure S4. 
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Figure 5. DFT-calculated properties of FTCP-designed crystals and target-satisfying regions in the training set 

(A) Case 1: DFT-calculated Ef for designed crystals based on ternary crystals with a target Ef = −0.5 eV/atom. The black 
dashed line is Ef = −0.5 eV/atom. Red dots indicate target-satisfying designed crystals. Seven out of 18 (38.9%) 
inversely designed crystals meet the target Ef within tolerance (gray band of −0.5 ± 0.06 eV/atom). 

(B) Case 2: DFT-calculated Eg, and Ef for designed crystals based on ternary and quaternary crystals with target Eg = 
1.5 eV and Ef < −1.5 eV/atom. The gray band indicates the target-satisfying region within tolerance. Red dots indicate 
target-satisfying designed crystals. Fourteen out of 19 (73.7%) of the inverse-designed crystals have Ef < −1.5 + 0.06 
eV/atom, and seven (included in the 14) (36.8%) have Eg = 1.5 ± 0.3 eV (0.06 eV/atom and 0.3 eV are user-specified 
tolerances for Ef and Eg). 

(C and D) Histograms of Eg and Ef of the crystals in the dataset of case 2, where target-satisfying crystals only comprise 
5.5% of the total dataset (recorded in Table 1), indicating the low likelihood of performing inverse design by pure 
random chance. The gray bands indicate target-satisfying regions within tolerance. See also Figure S5. 

To further test the robustness of the framework, we further inversely design another 77 crystals 
based on ternary crystals with staggered Ef values (−0.3, −0.6, and −0.7 eV/atom). Fourteen out 
of those 77 solid materials have Ef within the specified tolerance of ±0.06 eV/atom (section S4.2 
in supplemental information). Combined with the 18 designed crystals for Ef = −0.5 eV/atom, we 
boost and evaluate the “uniqueness” of these inverse-designed crystal structures in two ways: (1) 
Composition: we exclude designed crystals whose compositions exist in the Materials Project 
database. Consequently, all the designed 84 (valid, passed DFT structural relaxation) crystals in 
this demonstration have unique chemical formulae that do not exist in the Materials Project 
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database. (2) Structure: we investigate if the inverse-designed crystals can be discovered by 
manual elemental substitution (zero to minimum structural change). We use a structural 
dissimilarity value, which is calculated based on local coordination information of all sites in the 
two structures,32 to assess the structural uniqueness between designed crystals and crystals in the 
dataset (training + test). The dissimilarity value ranges from zero to above, with zero indicating 
identical crystal structures, and large values (>1) indicating large dissimilarity. (The dissimilarity 
value does not consider elements, e.g., comparing NaCl and CsF, which are both Fm3̅ m, would 
yield a dissimilarity value of zero.) A low dissimilarity value does not indicate similar crystals per se 
(such as NaCl and CsF), just similar structures, and thus, we use the dissimilarity value to assess 
the structural variety of the designed crystals and to suggest the likelihood of discovery by 
elemental substitution. For our set of 84 valid designed crystals, the median dissimilarity value is 
0.37, and 11 crystals have a dissimilarity value above 0.75 (a dissimilarity threshold used in the 
Materials Project database). The dissimilarity value per designed crystal is taken to be the 
minimum dissimilarity values between the designed crystal and every crystal in the dataset 
(training + test), as shown in section S4.3. We posit that designed crystals with high dissimilarity 
values have a low likelihood of being discovered by conventional elemental substitution. 

In the second design case (case 2), we extend the design criteria to multiple objectives by basing 
the design on ternary and quaternary crystals for bandgap Eg. The design criteria are: (1) 
bandgap = 1.5 eV (of a user-specified tolerance of 0.3 eV) and (2) formation energy < −1.5 
eV/atom (of a user-specified tolerance of 0.06 eV/atom). The bandgap target is selected because 
it is of interest both for solar cells (near the maximum of the detailed balance efficiency limit for 
single-junction devices)30 and for optoelectronic devices (e.g., LEDs). The negative formation 
energy criterion is chosen as a crude proxy for stability of the designed crystal (see the 
section synthesizability challenge for a nuanced discussion). We select ternary and quaternary 
crystals of ≤40 sites having energy above hull <0.08 eV/atom in Materials Project as our dataset 
(training + test). A total of 19 crystals with unique chemical formulae are inversely designed after 
filtering out compositions that already exist in the Materials Project database (compositional 
uniqueness). We quantify the median dissimilarity value of designed crystals to be 0.57, and three 
out of 16 valid crystals have a dissimilarity value above 0.75 (structural uniqueness). The 
dissimilarity values are shown fully in section S4.3. We perform DFT validation to examine whether 
these designed crystals' properties meet the user-specified target (after structural relaxation). 
Figure 5B shows the distribution of Eg and Ef of the 19 designed materials. Seven out of 19 (36.8%) 
of the designed crystals satisfy the bandgap target Eg = 1.5 (±0.3) eV, and 14, including the seven, 
(73.7%) satisfy the formation energy target Ef < −1.5 (+0.06) eV/atom. We set the user-specified 
tolerance of Eg of the designed crystals to be significantly larger compared to the one of Ef. This is 
due to the relatively larger prediction error for Eg compared with Ef in the property mapping of the 
target-learning branch (Table S3), on which the user-specified tolerances are based. This is 
attributed to the many zero values of Eg, a situation confusing the property mapping, and leaving 
the prediction for zero and near-zero values inaccurate. Figures 5C and 5D show the histogram 
of Eg and Ef values of all crystals in the dataset. The probability of finding crystals that satisfy 
both Eg = 1.5 (±0.3) eV and Ef < −1.5 (+0.06) eV/atom by random sampling (random success rate) 
is 5.5%, while FTCP reports a success rate of 36.8% (7/19), i.e., a 560% improvement over random, 
establishing the nontriviality of our inverse design framework. 
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Case 3: Design for TE power factor (with formation energy and bandgap constraints): Case 
study for TE applications 

In the third design case (case 3), we use the FTCP framework to address one of the outstanding 
challenges in the field of TEs, i.e., to design new earth-abundant materials that can convert heat 
to electrical energy and vice versa with high efficiency.33,34 This design case is challenging from a 
scientific point of view, because it includes excited-state (as opposed to ground-state) properties, 
and from an ML point of view, because it relies on sparsely labeled training data (only a small 
portion of the dataset have TE-relevant property calculated). Example TE-relevant labels include 
carrier effective mass, Seebeck coefficient, and power factor, which are computationally 
expensive for DFT or require different computation platforms and are not all present in the same 
database.31 

Considering the above, we set the design targets (for designing based on ternary and 
quaternary crystals) to be: (1) power factor as high as possible (heat-to-electricity conversion 
efficiency), (2) bandgap between 0.3 and 1.5 eV (desirable for low- and medium-temperature 
range), and (3) negative formation energy (a preliminary proxy for stability). We select ternary and 
quaternary crystals of ≤40 sites having energy above hull <0.08 eV/atom in Materials Project as 
our dataset (training + test) for ground-state properties, i.e., Eg and Ef, and we use the database 
from reference35 as our dataset (training + test) for power factor, where the constant relaxation 
time approximation under the Boltzmann transport equations (BTE) is used to calculate the TE-
relevant labels. The final dataset has 34,784 crystal structures with ground-state properties (Eg, Ef) 
from Materials Project. Only 4,284 crystals have corresponding calculated power factor labels 
from reference.35 

To tackle the sparse-label problem of the excited-state property, we train a semi-supervised 
VAE.36 The semi-supervised VAE allows us to jointly train the dataset with full entries of ground-
state properties and partial entries of calculated power factor. The semi-supervised VAE 
developed in this design case consists of a normal VAE, a target-learning branch that maps its 
entire latent space to ground-state property labels, and a subset of the latent space to the TE 
property, power factor. The property-mapping loss of the semi-supervised VAE includes one more 
component compared with the previous VAE in case 2, i.e., the regression for calculated power 
factor of 4,284 crystals. 

Two crystals out of a total 28 (7.1%) designed crystals are shown in Figure 6. After BoltzTraP 
calculation, the two design crystals are found to have state-of-the-art power factors, comparable 
with the best TE materials (for example, GeTe37 has a similar c-axis power factor value to the two 
FTCP-generated candidate materials). In Figure 6, the doping level and temperature are treated 
as user inputs. In this design case, the following domain-knowledge-based inverse design criteria 
are selected: (1) a power factor as large as possible, (2) a bandgap between 0.3 and 1.5 eV 
(desirable for low- and medium-temperature range), and (3) negative formation energy (a 
preliminary proxy for stability). We sample the latent space to generate 28 unique crystals after 
filtering out compositions that exist in the database (compositional uniqueness). The median 
dissimilarity value of designed crystals is 0.67, and five out of 12 valid crystals have a dissimilarity 
value above 0.75 (structural uniqueness) shown in section S4.3. (The two designed crystals have 
dissimilarity values of 0.80 and 0.53.) To examine the designed crystals, we conduct structural 
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relaxation using DFT to obtain the final atomic coordinates and perform BoltzTraP calculations to 
obtain power factor values.31 

 

Figure 6. Power factor comparison between two FTCP-designed crystals and the state-of-the-art 

(A and B) (A) and (B) show two FTCP-designed crystals with large TE power factors. The two designed crystals are 
calculated to have comparable power factor (c-axis only) with the state-of-the-art high-performance TE material, cubic 
GeTe, shown in (C). The composition of the two designed crystals do not exist in the Materials Project database 
(compositionally unique). Their simulated power factor values (divided by the relaxation time) are plotted as a function 
of doping level at room temperature, both for n and p doping along the x, y, and z crystal directions in (A) and (B). 
While Ef and Eg validations were performed using DFT (after structural relaxation), all power factor values were 
computed under a constant relaxation time approximation using the BoltzTraP package. 

Opportunities for improvement 

Synthesizability challenge 

The ultimate goal of inverse design is to pass the designed crystal, supposedly possessing the 
target property, to an experimental setting, and synthesize the designed crystal. However, the 
translation from a generative-model-based inverse design algorithm to an actual experimental 
synthesis of a designed inorganic crystal remains to be demonstrated in the field. More broadly, 
the topic of synthesis prediction has motivated large research centers (e.g., Center for Next 
Generation of Materials Design, at https://www.cngmd-efrc.org) indicating both the importance 
of the topic and the fact that much work remains to be done. 

In most prior art to date, instead of experimental validation, proposed inverse design 
algorithms proffer stability validation using either first-principles calculations,5,6,13,19-21 or ML 
surrogate models.20,22 Among these theoretical stability validations, the majority use negative (or 
small positive) formation energy as a preliminary proxy for stability (metastability)6,13,21-23 or small 
energy above hull as another proxy in the structure-varying cases (limited to specific chemical 

https://www.cngmd-efrc.org/
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systems, e.g., VxOy).13,19 The authors also adopt this preliminary proxy of negative formation 
energy in the design cases (as a design criterion) and ensure the dataset used having a small energy 
above hull, 0.08 eV/atom. (For FTCP, being both composition and structure varying, using energy 
above hull poses a challenge because hull diagrams of many chemical systems need to be queried, 
and especially for quaternary chemical systems, hull diagrams are absent for many chemical 
systems.) However, a negative formation energy design target, and a small energy above hull in 
the dataset, are not enough to guarantee synthesizability. In fact, the authors attempted to 
experimentally validate our model by synthesizing the FTCP-designed Mn2Co2Si5 in case 1 (DFT-
calculated Ef = −0.326 eV/atom for −0.5 eV/atom target, selected based on synthesis 
considerations compared with other designed crystals), but upon experimental exploration using 
an arc melting furnace from pure metal powders, this compound was revealed to decompose into 
sub-species. A DFT calculation further validates this observation by yielding a decomposition 
energy of 177 meV/atom. 

After this failed experimental validation, the authors realize the importance of optimizing 
for “precision” (and not “recall” or “F1 score”), framed in language often used in classification 
tasks. While the FTCP algorithm can design tens of thousands of candidates per hour, experimental 
throughput is finite. As such, there is a high penalty for false positives. We only need one successful 
candidate to be experimentally accessible, to succeed at inverse design, but we want to avoid 
wasting experimental throughput on unsuccessful candidates. 

As a potential pathway to future experimental validation, we explore adding a naive 
synthesizability metric (proxy) named “ICSD score,” indicating whether there is an entry for a 
material in the ICSD. This metric is one method Jang et al. have previously explored25,26 and often 
used in drug discovery.38 The metric is obtained by cross-referencing ICSD and Materials Project 
databases; those compounds in the Materials Project database with an ICSD entry are 
labeled “synthesizable (1),” and the rest “not synthesizable (0).” To accommodate the 
synthesizability metric, we add an output to the target-learning branch to map the latent space to 
ICSD score. By including the ICSD score loss in the overall property-mapping loss, the latent space 
organizes to reflect the gradient of both the user-specified target properties and the ICSD score 
illustrated in Figure 7. During inverse design, although the ICSD score intrinsically contains many 
false negatives (synthesizable crystals not having ICSD entries), the ICSD score still provides us with 
information on where to sample in addition to the target properties.39-43 
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Figure 7. Property-structure latent space with the addition of ICSD score 

(A and B) (A) and (B) shows the property-structured latent space colored by the actual ICSD score, and the actual 
formation energy, respectively. Visualization of the property-structured latent space is with the first and the third 
dimension (256 dimensions in total) of case 1 as an example, after trained with the target-learning branch having an 
additional output to predict ICSD score. ICSD score is a naive synthesizability metric predicting whether a point in the 
latent space would have an ICSD entry. Crystals having ICSD entries are labeled 1, indicating “synthesizable”, and the 
rest 0, indicating “not synthesizable.”  The latent-space colored points shown are crystals in the training set. From the 
latent space coloring, a separation between the existence and the absence of ICSD entries in (A) is fulfilled on top of 
the previous Ef property gradient in (B). This benefits the sampling by letting the user sample from the region where 
the crystals are of higher likelihood to be synthesized (i.e., ICSD scores of 1). 

The addition of the synthesizability metric also demonstrates the flexibility of the framework 
to add different metrics during inverse design, should consensus on synthesizability or stability 
metrics be agreed upon by the field. Besides placing the prediction of the additional metric as an 
additional output of the target-learning branch, placing a classification model on the designed 
crystals (after decoding), i.e., filtering the designed crystals instead of the latent points, is also a 
feasible way. As mentioned previously, much work remains to be completed to develop widely 
accepted synthesizability metrics. Using the examples presented in this study as guides, the FTCP 
framework should be able to accommodate future metrics. 

Invariance challenge 

An aspect of the crystallographic representation that is often considered, arising from the 
property-prediction applications, is invariance. A crystallographic representation should satisfy full 
invariances, including translational, rotational, permutational (if there is an order of sites/lattice 
parameters in the representation), and supercell invariances, because these invariances 
guarantee different descriptions (such as different CIFs) of the same crystal having the exact same 
representation, which always results in the same value of the predicted property. A notable class 
of property-prediction (noninvertible) representation that satisfies full invariances is graph-based, 
e.g., CGCNN,27 MEGNet,1 and SchNet.44 

However, generative-model-based inverse design (not directed evolution) algorithms need to 
generate the exact crystal structure (CIF) as the output. It is comparably easy to translate the 
crystal structure to an invariant representation, but the backward translation from the invariant 
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representation to the exact crystal structure is difficult to implement given this is a one-to-many 
problem. In prior art, we observe that most of the invertible representations do not satisfy any 
invariances (Table S1) except for the following two (we exclude the composition-only 
representation22 from invariance discussion because there is no geometry involved): 

1. Crystal site feature embedding (CSFE)21 satisfies translation invariance. CSFE assumes a 3D 
grid representation for perovskite structures and fills in the grid with various site/elemental 
features, which in essence is a composition representation formatted by structure. Since 
nothing geometrical except for elemental arrangement is included in CSFE, it satisfies 
translational invariance. 

2. Concatenated spectrum representation of composition and powder XRD pattern23 satisfies 
full invariances, but it is not fully invertible, i.e., only outputting a powder XRD pattern, which 
is hard to convert to a crystal unit cell with algorithmic automation. 

Therefore, to our knowledge, there are currently no invertible crystallographic representations 
that satisfy full invariances. Satisfying full/partial invariances for a generalized representation 
(both composition and structure varying) is an even harder task. This is an interesting and open 
field of research. 

For the current FTCP representation, it also does not satisfy any invariances, determined by the 
real-space features that solely guarantee invertibility. Kim et al.19 have shown that performing 
data augmentation for the real-space representations will lead to a more balanced generation of 
crystal structures for Mg-Mn-O systems. Given a much larger chemical range (105–106) is 
considered in this study, data augmentation is not feasible. The current formulation of reciprocal-
space features only preserves permutational invariance to the order of site inputted (atom 
indexing), but it has the potential to be formulated to preserve more invariances given the 
invariances in the powder XRD pattern. To provide some quantification, although the FTCP 
representation is mainly developed to do inverse design, we present the performance degradation 
used for property prediction/mapping due to translation, rotation, permutation, and different 
supercells in section S5. 

Conclusion and future work 

We present a framework for general (both composition- and structure-varying) inverse design 
of inorganic crystals, called FTCP. This method uses an invertible crystallographic representation 
comprising concatenated real- and inverse-space features of crystals, where the real-space 
features are CIF-like, guaranteeing invertibility, and the reciprocal-space features embed 
periodicity and convoluted elemental properties. By jointly training a VAE with a feedforward 
target-learning branch, we obtain a probabilistic property-structured latent space that allows for 
inverse design of crystals with user-specified properties through sampling, decoding, and 
postprocessing. We use FTCP to perform inverse design and design unique solid-state materials 
with targeted Ef, Eg, and TE power factor with various chemistries and crystal structures. It is 
noteworthy that the last property, power factor, is an excited-state property that is challenging to 
calculate from first principles, yet remains accessible using our inverse design approach through 
semi-supervised learning. We demonstrate that FTCP can design new crystalline materials that are 
not in the training set and are dissimilar from known structures. We validate these designed 
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crystals using DFT structural relaxation and confirm their properties by DFT and BoltzTraP 
calculations. FTCP achieves improvement over random (the probability of finding a material with 
the user-specified target property by randomly picking from the dataset) ranging from 38.8% to 
560%. As a possible pathway to an experimental validation, we explore the addition of a naive 
synthesizability metric, the existence of an ICSD entry, to further address the synthesizability 
challenge and demonstrate that FTCP has the flexibility to simultaneously consider this additional 
metric alongside user-specified target properties. We also comment on the invariance challenge 
faced by structure-conscious invertible crystallographic representations, including the FTCP 
representation. 

Experimental procedures 

Resource availability 

Lead contact 

Further information and requests for resources should be directed to and will be fulfilled by the 
lead contact, Tonio Buonassisi (buonassi@mit.edu). 

Materials availability 

This study did not generate new unique reagents. 

Data and code availability 

The BTE-calculated power factor is from reference,35 and the rest of the dataset are queried 
from the Materials Project9 in November 2019. (Note a query with the same criteria now would 
yield a different number of crystals from the recorded number in the study due to the updates 
and the addition of crystals of the Materials Project.) Source codes, and trained parameters, are 
available at https://github.com/PV-Lab/FTCP. 

Real-Space Features 
To effectively represent a crystalline unit cell in the real space, we extract the necessary 

information in the CIF, and we concatenate the following information matrices to form CIF-like 
real-space features, as shown in Figure 2A. (Zero padding is used to satisfy the shape specified 
when necessary.) 

• Element matrix of shape (M, max(Nelements, 3)), where M is the length of the one-hot vector 
representing elements (M = 103 in our case), and Nelements is the largest number of 
components, e.g., Nelements = 4 when both ternary and quaternary crystals are in the dataset. 
The number of columns of the element matrix is set to at least three, to conveniently 
concatenate to the lattice and site coordinate matrices, which have a minimum of three 
columns. 

• Lattice matrix of shape (2, max(3, Nelements)). (For the sake of clarity, and without loss of 
generality, the shape is written as 2 × 3 in section representation.) 

• Site coordinate matrix of shape (Nsites, max(3, Nelements)), where Nsites is the largest number 
of sites in the unit cell. 

• Site occupancy matrix of shape (Nsites, max(3, Nelements)).  

mailto:buonassi@mit.edu
https://github.com/PV-Lab/FTCP
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• Elemental property matrix of shape (K, max(Nelements, 3)), where K is the length of the 
elemental property vector Z (K = 92 from atom_init.json of the CGCNN27 code).  

The concatenated real-space features are of shape (M + 2 + 2∙Nsites+ 1 + K, max(Nelements, 3)), where 
the extra one row of zero padding is added to accommodate the distance of k points in the 
reciprocal-space features. 

Reciprocal-Space Features 
The most common reciprocal-space features of a crystal in materials science are its diffraction 

pattern. X-ray crystallography is the primary way to study periodic crystals. Modified diffraction 
images for periodic crystals have been shown to classify their structures accurately.24 We enrich 
the information in diffraction images in the reciprocal space by projecting elemental property 
vector Z to different crystal planes (hkl) with an equation modified from discrete Fourier 
transformation (Equation 1 and S2.2). The authors find mapping Ihkl = |Fhkl|2 to 2θ as in the 
powder XRD would impose large sparsity in the data, as only a small number of 2θs actually have 
signals, and the sparsity problem only becomes worse with a finer grid of 2θ; thus, authors refrain 
from this mapping and account for it by prepending the distance of the k point (hkl) for each Fhkl. 

Thus, the reciprocal-space features contain: 

• Distance (of k point) matrix of shape (1, Nk points), where Nk points is the number of 
nonzero k (hkl) points (59 in our case). Nk points can be treated as a hyperparameter to be 
tuned. We obtain Nk points to be 59 by first limiting |ℎ| + |𝑘| + |𝑙| ≤ 3  (Nk points = 61) and 
further tuning (Nk points reduced to 59). 

• FTCP matrix of shape (K, Nk points), where column vector Fhkl is arranged according to hkl. 

After prepending zero padding of shape (M + 2 + 2∙Nsites, Nk points), we obtain the reciprocal-space 
features of shape (M + 2 + 2∙Nsites+ 1 + K, Nk points). 

Generative model 
The generative model (VAE) encodes the FTCP representation into a probabilistic latent space 

of reduced dimension (256) that can be sampled from. An additional target-learning branch 
mapping the latent vector to material properties further organizes the latent space to reflect 
continuous variation of the properties/property gradients (thus the name property-structured 
latent space). Inverse design of new crystals is achieved by sampling different points other than 
the existing crystals in the property-structured latent space regions that fulfill the user-defined 
design targets (enabled by the property gradients). Those sampled points are decoded to FTCP-
representation-styled outputs using the decoder. With postprocessing, the CIF is then recovered 
from the real-space features of the outputs. 

We treat the reciprocal-space features as a 1D signal with Nk points channels. The signal in each 
channel represents the elemental property projection along a specific (hkl) direction. We use a 1D 
convolutional neural network (CNN) to encode the FTCP representation. The 1D CNN in this work 
is inspired by PointNet used for 3D point sets classification.19,45 There is a spatial 1D relationship 
in the reciprocal-space features. Along this spatial axis, our reciprocal-space representations are 
arranged according to k (symmetry) points (hkl) that are universal in describing the electronic 
band structure. 
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The encoder encodes the FTCP representation into a probabilistic normal distribution 
(zmean with a diagonal covariance matrix, zvariance) using 1D CNN. The decoder, with a symmetrized 
architecture (using transposed convolutional layers) of the encoder, samples 
around zmean with zvariance to reconstruct the FTCP representation, and the reconstruction is 
regularized by the KL divergence between the latent distribution and the standard Gaussian (zero 
mean and unit variance) prior. In addition to constraining the latent vector distribution to standard 
Gaussian prior, we also simultaneously train a feedforward target-learning branch to map zmean to 
material properties. The target-learning branch uses Equation 2 where g is fully connected neural 
networks, σ is the sigmoid function (target properties are normalized to the range of 0–1), and z is 
the latent vector. R(z) is the predicted material properties, and in the case of designing for multiple 
target properties, instead of a scalar, R(z) is a vector, of which each entry corresponds to one 
target material property. 

𝑹(𝒛) =  𝜎(𝑔(𝒛)) (Equation 2) 

In total, we have three losses: 

• Lreconstruct, the reconstruction loss, using sum of squares between the reconstructed FTCP 
representation (matrix) and the inputted FTCP representation (matrix). This is summed over 
a batch. 

• LKL, the KL loss, i.e., the KL divergence. This is averaged over a batch. 

• Lproperty, the property-mapping loss, using sum of squares between predicted material 
properties R(z) and actual material properties. In case 3, where semi-supervised learning is 
used, the loss for the incomplete TE label, power factor, is calculated separately also using 
the sum of squared. (For ICSD score, although a classification task in nature, we still use the 
sum of squares as loss, taking advantage of the 0–1 range of ICSD score, and the sigmoid 
activation function.) This is summed over a batch. 

The overall loss is  

𝐿 = 𝐿reconstruct + β𝐿KL +  λ𝐿property(+𝛾𝐿power factor) (Equation 3) 
where β, λ, and γ are user-defined coefficients. (We give the power factor loss a separate 
coefficient for the semi-supervised learning.) To learn a disentangled representation, we allow 
heavy penalization of the latent distribution (β > 1).46 We minimize the overall loss with a root 
mean squared propagation (RMSprop) optimizer. We train with a batch size of 256, 200 epochs 
and a dynamic learning rate. The detailed architecture and hyperparameters of the model used in 
every design case are tabulated in section S2.4 in supplemental information. 
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Supplemental Experimental Procedures 

S1. Prior Art on Invertible Crystallographic Representations 

Table S1. Invertible Crystallographic Representations Used in Generative-Model-Based Inverse Design 
Algorithms, Related to Figure 1 

Crystallographic 
Representation 

Algorithms using the 
Representation 

Composition-
Varying 

Structure-
Varying 

Invertible Invariances 
Satisfied* 

In This Study 

Fourier-Transformed 
Crystal Properties 

(FTCP) 
Representation 

FTCP‡ Yes Yes Yes NIL 

Prior Art: Composition-Only Representations 

Composition 
Encoding 

MatGAN1† Yes N/A Yes N/A 

Prior Art: Structure-Conscious Representations 

Lattice Matrix + Site 
Fractional 

Coordinate 
Matrix(ces) 

CrystalGAN2†, 
Composition-

Conditional Crystal 
GAN3† 

No Yes Yes NIL 

3D Voxel Descriptor ZeoGAN4† No Yes Yes NIL 

3D Voxel Descriptor 
encoded to 2D by an 

autoencoder 
iMatGen5‡, DCGAN6† No Yes Yes NIL 

Crystal Site Feature 
Embedding (CSFE) 

VAE+target-learning 
branch7‡ 

Yes No Yes Translational 

2D Tensor 
comprising 

nonequivalent site 
coordinates, lattice 

length, one-hot-
encoded space 

group, and 
elemental properties 

CubicGAN8†,§ Yes 
Limited to 

Cubic 
Structures 

Yes NIL 

Concatenated 
Spectrum 

Representation of 

Double VAE + 
Bayesian 

Optimization9‡,§ 
Yes Yes Limited/No Full‖ 
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composition and 
powder XRD pattern 

*These are invariances satisfied inherently by materials representation; the invariances achieved by 
algorithmic implementations are not included, such as rotational invariances achieved by 3D convolutional 
neural network with augmentation10. 
†Algorithms using generative adversarial network (GAN) 
‡Algorithms using variational autoencoder (VAE) 
§Came out later than our arXiv preprint 
‖Full invariances include translational, rotational, permutational (if there is an order of sites/lattice 
parameters in the representation), and supercell invariances. 

S2. The FTCP Framework 

S2.1 Property-Structured Latent Space 

 

Figure S1. Property-Structured Latent Space, Related to Figure 2 and 7. 

Visualization of the property-structured latent space with the third and the 12th dimension (256 
dimensions in total) of Case 2: designing for Eg and Ef together in Section Case 1: Design for Formation 
Energy and Case 2: Design for Bandgap (with formation-energy constraint): Case studies for photovoltaic & 
optoelectronic applications. The dots are encoded training data in the latent space, and they are colored 
by properties: (A) formation energy per atom, and (B) band gap. 

We have two observations of the property-structure latent space: (1) the encoded training data 
are densely packed (forming a near hypersphere), and (2) there is a continuous change of property 
(property gradient). The dense packing is achieved by minimizing the VAE Kullback-Leibler (KL) loss, 
and the property gradients are formed by minimizing the property-mapping loss of the target-
learning branch (in Section Model). In Case 2, discussed in Section Case 1: Design for Formation 
Energy and Case 2: Design for Bandgap (with formation-energy constraint): Case studies for 
photovoltaic & optoelectronic applications, the target-learning branch is mapping the latent vector 
to both Ef, and Eg, and thus the property-structed latent space shows gradients with respect to 
both Ef, and Eg. 
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Our latent space has 256 total dimensions; the choice of which two to show in our figures was 
a question of data visualization. We choose the first and the third dimensions (out of 256 of the 
latent vector) to create the scatter plot in Figure 7, and the third and the 12th in Figure 2B, and S1, 
and the 24th and the 203rd in Figure S2, as specified in the respective figure captions. They are 
selected because they present clear intuition of high-dimensional property gradients and the 
dense packing of the latent space similar to a hypersphere. The corresponding properties are 
noted either in panel titles, e.g., (A) xxx, or in color bar titles. 

We don’t choose PCA11, t-SNE12, or other dimensionality reduction visualization because we 
want to preserve the near-hyperspherical shape of the latent space through visualization. 
Visualizing only two dimensions is showing a cross-sectional view of the near hypersphere (as if 
cut by a plane). Other dimension reduction visualizations, albeit able to preserve the high-
dimensional property gradient, lose the near-hyperspherical arrangement of the latent space. 

S2.2 Formulation of Reciprocal-Space Features (Evaluated with Property Mapping) 

Table S2. Comparison of Different Formulations of Reciprocal-Space Features 

MAE, mean absolute error. All results are calculated with an updated version of Materials Project accessed 
on 14 Sep 2021. (Materials Project has updated since our design cases, which accessed Materials Project 
on 22 Jun 2020.) All results are mean values from five-fold cross validation. Dataset used is the same as the 
one in Case 1, described in Table S4. 

 FTCP with 𝐅ℎ𝑘𝑙
1 * FTCP with 𝐅ℎ𝑘𝑙

2 † FTCP with 𝐅ℎ𝑘𝑙
3 ‡ 

MAE: Ef (eV/atom) 0.051 0.050 0.054 

MAE: Eg (eV) 0.204 0.216 0.244 

*𝐅ℎ𝑘𝑙
1 =  ∑ 𝒁𝒊 ∙

𝑗

2
ln(𝑒−𝑗2𝜋(ℎ𝑥𝑖+𝑘𝑦𝑖+𝑙𝑧𝑖)) 𝑁

𝑖=1 = ∑ 𝒁𝑖
𝑁
𝑖=1 ∙ 𝜋(ℎ𝑥𝑖 + 𝑘𝑦𝑖 + 𝑙𝑧𝑖) 

†𝐅ℎ𝑘𝑙
2 =  ∑ 𝒁𝒊 ∙ (𝑒−𝑗2𝜋(ℎ𝑥𝑖+𝑘𝑦𝑖+𝑙𝑧𝑖))

𝑗

2𝑁
𝑖=1 = ∑ 𝒁𝒊 ∙ 𝑒𝜋(ℎ𝑥𝑖+𝑘𝑦𝑖+𝑙𝑧𝑖)𝑁

𝑖=1  
‡𝐅ℎ𝑘𝑙

3 =  ∑ 𝒁𝒊 ∙ 𝑅𝑒𝑎𝑙(𝑒−𝑗2𝜋(ℎ𝑥𝑖+𝑘𝑦𝑖+𝑙𝑧𝑖))𝑁
𝑖=1 = ∑ 𝒁𝒊 ∙ cos(2𝜋(ℎ𝑥𝑖 + 𝑘𝑦𝑖 + 𝑙𝑧𝑖))𝑁

𝑖=1  

Because the discrete Fourier transform is a sum of exponentials of imaginary terms, and we 
need real numbers to make tractable features, we hereby compare three different formulations 
(preprocessings) in Table S2. Table S2 shows the property mapping mean absolute error (MAE) of 
the FTCP representation with three different formulations of the reciprocal-space features (in 
Section Representation and Section Reciprocal-Space Features). Based on these results, we choose 
𝐅ℎ𝑘𝑙

1  in our study. 

S2.3 Ablation Study of the FTCP Representation 

Table S3. Ablation Study of the FTCP Representation 

This table is calculated with an updated version of Materials Project accessed on 14 Sep 2021. (Materials 
Project has updated since our design cases, which accessed Materials Project on 22 Jun 2020.); MAE, mean 
absolute error; MAPE, mean absolute percentage error; a.u., arbitrary unit. Dataset used is the same as the 
one in Case 1, described in Table S4. 

 
Real-Space 
Features 

Reciprocal-Space 
Features 

Real + Reciprocal-Space 
Features 

(FTCP Representation) 

Benchmark 
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Property Mapping (Encoder + Target-Learning Branch) 

MAE*: Ef (eV/atom) 0.048 0.117 0.051 0.055 (CGCNN) 

MAE*: Eg (eV) 0.202 0.354 0.204 0.250 (CGCNN) 

Reconstruction (Full VAE + Target-Learning Branch) 

Accuracy:  
Constituent Elements  
(%) 

98.1 –† 99.0 – 

MAPE: 
Lattice Constants (abc) 
(%) 

12.5 –† 9.01 – 

MAPE: 
Lattice Angles (αβγ) 
(%) 

8.12 –† 5.07 – 

MAE: 
Site Fractional Coordinates 
(a.u.) 

0.047 –† 0.045 – 

*Results are mean values from five-fold cross validation. 
†Reciprocal-space features alone cannot reconstruct the 3D crystal, and are excluded in the reconstruction error 

comparison 

We perform the ablation study on the FTCP representation in Table S3 under two scenarios, (1) 
in property mapping, and (2) in reconstruction. In property mapping, we only use the encoder + 
target-learning branch (a feed-forward model). We observe that real-space features alone 
perform the best, while the FTCP representation (real + reciprocal-space features) performs on 
par with real-space features alone. We also benchmark this property mapping against the state-
of-the-art graph representation, crystal graph convolutional neural networks13 (CGCNN). In 
reconstruction, we use the full VAE (i.e., encoder, decoder) + target-learning branch. We observe 
that the FTCP representation achieves higher accuracy in reconstructing constituent elements, 
and lowers errors in reconstructing lattice parameters, and site fractional coordinates than real-
space features alone. (Only using reciprocal-space features cannot reconstruct the 3D crystal, and 
are thus excluded in this reconstruction comparison.) The overall results of the two scenarios 
justifies the incorporation of the additional featurizer, reciprocal-space features, along with the 
real-space features which solely guarantees invertibility. 

The incorporation of the reciprocal-space features in the reconstruction has two competing 
effects, positive by creating more correlation between the input for the reconstruction to latch on 
(analogous to the fact that predicting for two related tasks help the model learn in multitask 
learning), and negative by diverting the reconstruction capacity from the real-space features 
reconstruction. Based on the results, the incorporation has more positive effects in the 
reconstruction. The validating effect (helping with the reconstruction) of the reciprocal-space 
features is learnt by model during training, as in multitask learning, instead of explicitly enforced. 
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Note that performance of CGCNN is slightly worse than reported, such as in the Matbench 
study14. In this benchmark, we use the same hyperparameters as in the Matbench study, and the 
difference in performance can be attributed to the difference in datasets used. The Matbench 
study uses the whole Materials Project, while this benchmark only uses ternary compounds with 
≤ 20 sites, and < 0.08 eV/atom energy above hull as used in Case 1. We also note, just slight 
changing our dataset to ≤ 0.1 eV/atom energy above hull, CGCNN performs better, achieving 
0.028 eV/atom (MAE for Ef), and 0.190 eV (MAE for Eg). 

S2.4 Datasets, Architecture and Hyperparameters 

Table S4. Datasets, Architecture, and Hyperparameters Used in the Design Cases 

 Case 1 Case 2 Case 3 

Datasets 

Number of 
Components 

Ternary 
Ternary, and 
quaternary 

Ternary, and 
quaternary 

Number of sites ≤ 20 ≤ 40 ≤ 40 

Energy above hull 
(eV/atom) 

< 0.08 < 0.08 < 0.08 

Train Test Split 80% (training set), and 20% (test set) 

Architecture 

Encoder 

The encoder uses three 1D convolutional layers with filter sizes {5,3,3}, 
number of filters {32,64,128}, and strides {2,2,1}. After every convolutional 
layer, batch normalization is immediately applied. Leaky-ReLU activation 
function with parameter 0.2 is used after every batch normalization. The 
output of the convolutional layers is transformed to a 256-dimensional latent 
vector 𝑧 via two fully connected layers of 1024 nodes with sigmoid activation 
function, and of 256 nodes with linear activation function. 

Decoder 

The 256-dimensional latent vector is first transformed to the output shape of 
the last convolutional layer in the encoder via a fully connected layer with 
ReLU activation, and a reshape layer. After applying batch normalization to 
the transformed output, three 1D transposed convolutional layers are used 
with filter sizes {3,3,5}, number of filters {128,64,32}, and strides {1,2,2}. Batch 
normalization and ReLU activation function are used between the transposed 
convolutional layers. The last layer of transposed convolutional layer is 
followed by sigmoid activation function (corresponding to reconstructed 
input of the VAE). 

Target-Learning Branch 

The target-learning branch connects to the latent space, and takes the mean 
of the 256-dimensional latent vector 𝒛𝐦𝐞𝐚𝐧 as input. 𝒛𝐦𝐞𝐚𝐧 is first activated 
by ReLU function, and then passed through two fully connected hidden layers 
of 128 nodes, and 32 nodes with ReLU activation functions. Then a fully 
connected output layer with sigmoid activation function produces a vector of 
predicted property(ies). The number of nodes of the output layer depends on 
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the number of properties being mapped, i.e., one, two and three for Case 1, 
2, and 3. 

Hyperparameters 

Batch Size 256 

Epochs 200 

Optimizer Root Mean Squared propagation (RMSprop) 

Learning Rate 

The learning rate is constantly reduced by 0.3 on plateau (with a minimum 
value of 1e-6), while the training loss has not improved over four epochs. 

      Epoch 0: 5e-4 

      Epoch 50: 1e-4 

      Epoch 100: 5e-5 

      Epoch 0: 5e-4 

      Epoch 50: 1e-4 

      Epoch 100: 5e-5 

      Epoch 0: 8e-4 

      Epoch 50: 2e-4 

      Epoch 100: 5e-5 

β 2 2 3 

λ 10 10 20 

γ – – 5 

Scale  

(for the scaled unit 
Gaussian noise used in 
the local perturbation 
sampling) 

0.4 0.6 0.9 

For hyperparameters, batch size is tuned between 32 and 1024 by randomly sampling various 
powers of 2; learning rate is tuned with a resolution of a logarithmic scale; β , λ, and γ, are 
randomly sampled from grids, {1, 2, 3, 5, 10, 100}, {1, 10, 50, 100}, and {5, 50, 200, 500}. The scale 
for the scaled unit Gaussian noise used in the local perturbation sampling ranges from 0.3 to 3, 
and “is determined through trial-and-error balancing of exploration and exploitation, bounded by 
structure design errors (for lattice) of <20% while still ensuring maximum possible exploration”, 
discussed in greater detail in Section S2.5 Comparison of Sampling Strategies. Users of FTCP are 
encouraged to do their own hyperparameter tuning as the dataset is bound to be different. (These 
hyperparameters are from our design cases that accessed the Materials Project on 14 Sep 2021, 
and since then, the Materials Project has been updated.) 

S2.5 Comparison of Sampling Strategies 
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Figure S2. Three Sampling Strategies 

(A) local perturbation (Lp), (B) spherical linear interpolation (Slerp), and (C) global perturbation (Gp) in 
the latent space. The latent space is visualized with the 24th and the 203rd dimension (256 dimensions in 
total) of Case 1. Colored latent points are encoded training data. Red circles indicate sampled latent points. 

In Figure S2, we illustrate three sampling strategies we explore, namely local perturbation (Lp), 
spherical linear interpolation15 (Slerp), and global perturbation (Gp). Lp behaves similar to the 
decoder, sampling (perturbing) around a latent point with a scaled unit Gaussian noise. Figure S2A 
shows the sampling around one latent point. Slerp, as the name suggests, sampling with spherical 
linear interpolation between a pair of latent points. Figure S2B shows the sampling between one 
pair of latent points. Gp samples using a Gaussian with the mean, and the variance of the latent 
space, shown in Figure S2C. In addition to the decoder-like Lp, Slerp is good for sampling in 
between (interpolation) points in the training set, and Gp samples with high overlapping with the 
latent space. 

As a demonstration, we evaluate the performance of three sampling strategies in Case 1, where 
the design target is Ef = -0.5 eV/atom. For Lp, we prioritize sampling around training data that have 
the closest Ef values (with scale = 0.4 for the scaled unit Gaussian noise); for Slerp, we prioritize 
sampling in between training data that have the closest Ef values (with 10 interpolations between 
each pair); for Gp, as it cannot do property-driven sampling, we simply sample with the mean and 
the variance of the latent space. We use a metric gauging the structure design errors of 
rediscovered crystals. The rediscovery refers to rediscovering crystals in the test set (20% of the 
dataset) via sampling. For a fair comparison, we use the same number (500) of rediscovered 
crystals in the test set for all strategies in calculating the structure design errors. The structure 
design errors are between the decoded FTCP representation of rediscovered crystals via sampling 
(without DFT structural relaxation), and the FTCP representation of the actual corresponding 
crystals in the test set. For structure design errors, we look at the mean absolute percentage error 
(MAPE) of designed lattice constants, and designed lattice angles, and the mean absolute error 
(MAE) of designed site fractional coordinates (the change from MAPE to MAE is due to zero values 
of site fractional coordinates leading to nonsensical percentage errors). The results are tabulated 
in Table S5. 
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Table S5. Evaluation of Three Sampling Strategies in terms of the Structure Design Errors of Rediscovered 
Crystals 

The structure design errors are calculated for 500 rediscovered crystals in the test set from every sampling 
strategy. The designed crystals here do not go through DFT structural relaxation, but decoding from 
sampled latent points, and postprocessing. Lp: local perturbation, Slerp: spherical linear interpolation, Gp: 
global perturbation. All results are calculated with an updated version of Materials Project accessed on 14 
Sep 2021. (Materials Project has updated since our design cases, which accessed Materials Project on 22 
Jun 2020.) MAPE: mean absolute percentage error, MAE: mean absolute error, a.u.: arbitrary unit. Dataset 
used is the same as the one in Case 1, described in Table S4. 

Structure Design Errors of Rediscovered Crystals Lp Slerp Gp 

MAPE: 
Designed Lattice Constants (abc) 
(%) 

16.1 21.9 28.5 

MAPE: 
Designed Lattice Angles (αβγ) 
(%) 

11.5 16.7 30.6 

MAE: 
Designed Site Fractional Coordinates 
(a.u.) 

0.28 0.29 0.30 

We find that new crystals obtained by Lp mainly experience elemental substitution compared 
to its root crystal. This agrees well with the prevailing design principles for new crystalline 
materials, which makes use of manual substitution of certain elements in the unit cell16. Slerp and 
Gp generate samples that experience more structural change; however, the structure design 
errors in the rediscovered crystals are much higher. Overall, we observe this tradeoff between 
exploitation, and exploration when sampling close to, or far from the latent point of known crystals 
(i.e., in the training set). 

To understand more about the results, we review the training process of VAE: the encoder 
maps the input to 𝒛𝐦𝐞𝐚𝐧 and 𝒛𝐯𝐚𝐫𝐢𝐚𝐧𝐜𝐞, and the decoder maps the vicinity of 𝒛𝐦𝐞𝐚𝐧 according to 
𝒛𝐯𝐚𝐫𝐢𝐚𝐧𝐜𝐞 back to the input itself; the Kullback-Leibler (KL) loss encourages 𝒛𝐦𝐞𝐚𝐧 and 𝒛𝐯𝐚𝐫𝐢𝐚𝐧𝐜𝐞 to 
follow those of a unit Gaussian (prior distribution of the latent variable 𝒛), while the reconstruction 
loss encourages clustering of latent points of similar inputs, and the property-mapping loss 
promotes clustering of latent points of similar properties; in the joint effect of various losses, 
𝑧𝑚𝑒𝑎𝑛 is densely packed around the center of latent space, while latent points of similar input and 
similar properties are near one another. This dense-packing and similarity-clustering enables 
“interpolation” from one known latent point to another yielding new crystals, thus achieving 
embedding the input to a continuous latent space. Due to the interpolation nature of the formed 
latent space, the validity distribution is not uniform across the latent space. Instead, high validity 
clusters around latent points of known crystals (because of how decoder works), and lower in 
between. 

When a sampling strategy does a higher degree of exploitation (sampling close to latent points 
of known crystals), such as Lp, the new sampled crystals show greater resemblance to known 
crystals, and the designed structures show higher validity, i.e., lower structure design errors. On 
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the other hand, when a sampling strategy performs a higher degree of exploration (sampling far 
away from latent points of known crystals), such as Slerp, and Gp, the new sampled crystals show 
higher variety, and the designed structures show lower validity, i.e., higher structure design errors. 
(Although for Lp, we can control the exploitation-exploration tradeoff by adjusting the scale for 
the scaled unit Gaussian noise. In fact, in the design cases, the scale is determined through trial-
and-error balancing of exploration and exploitation, bounded by structure design errors (for lattice) 
of <20% while still ensuring maximum possible exploration. 

Given the long development cycle for solid-state materials17, it is of critical importance to have 
an accurate initial guess. The density functional theory (DFT) calculations to validate FTCP-
designed crystals are computationally expensive. DFT calculations conducted in this study takes 
around 1-2 hours per crystal with 16 CPU cores. More complex DFT calculations, such as defect 
calculations, can take days to complete18. Given all the above considerations, we choose Lp in our 
three design cases, which gives us the lowest structure design, as our property-driven sampling 
strategy. 

S2.6 Sources of Error for Validity Rate, and the Need of DFT Structural Relaxation 

When designing a new crystal using FTCP, there are two notable sources of error resulting from 
imperfect elimination of reconstruction loss (i.e., misplacements of atoms around their lattice sites, 
and inaccuracy of reconstructed lattice and elements), which contribute to the error of validity 
rate—(1) decompression error: note that latent space is a reduced-dimension representation of 
the CIF. As such, there is a decompression error (similar to going from a TIF image to a JPG one), 
and (2) interpolation error: As mentioned in Section S2.5 Comparison of Sampling Strategies, we 
note that sampling within latent space can generate error. Moving from one point to another in 
latent space causes the atoms and their positions to shift. Slight changes to a latent-space point, 
caused by variations in sampling, can also cause the designed crystal to change slightly. From the 
structure design errors of rediscovered crystals (without relaxation) using Lp in Table S5, we see 
that FTCP-designed crystals yield crystal parameters very close (≤ 20%) to relaxed ones (in test set 
calculated by Materials Project). The DFT structural relaxation is like a snap-to-grid. Of course, 
there are other cases where the decoded crystals are so off (because of interpolation, and the 
universal acceptability of the postprocessing) that the structural relaxation (with a specific 
tolerance) would result in unintended crystals or fail altogether. 

S3. FTCP-Designed Crystals, and Their First-Principles Calculations 

S3.1 FTCP-Designed Crystals 

Table S6. FTCP-Designed Crystals, Related to Figure 4, 5, and 6. 

Only valid structures are listed, namely structurally relaxed crystals. Only composition is listed, and the 
crystallographic information files (CIFs) can be found at https://github.com/PV-Lab/FTCP. Bolded are 
target-satisfying crystals. 

Design 
Cases 

Design Targets FTCP-Designed Crystals 

https://github.com/PV-Lab/FTCP
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Case 1 

Ef = -0.5 eV/atom 
Ag2MgNb, LiRu2Zr, Al4DyLu, As2Li3Mn, AcAl2Os, Gd2In3Sn3, 
Al4DyLa, CRbRh3, CuPbSr2, Mn2Co2Si5, Al4HoPm, CeFeGe3, 
Fe2LiSe2, Bi4Ce2Cu 

Ef = -0.3 eV/atom 
CuGaLi2, LiOs2Si, Ca2LiS, BeGe2Si, Ag2CdN, Ag2AlCa, GaNb6Pt, 
GeNb6, AsNb6Pt, Rh2SbSn, CCoLa, CePb2Y, Rh2SbSm, 
FeGd2Ni3, Co2ErSn, Al2Ge2U, Ge2U3 

Ef = -0.6 eV/atom 

NaPdSi, Ir5Mg, AuCK3, AuK3N, K3PbO, K2RuBr6, KRhO2, 
Ge2Rh2Sc, RhScO2, PaSe4Ti2, CrS3W2, CuPdF2, AlSrP, VSrP, 
MgSbY, MnSbY, In4S8O, BaPdSn, CeGeRh3, GePrRh3, 
RhSm2Sn2, AgAlGd, AuHo2Pd, PdTlTm, SbYbS, HfPd2Yb, BTh4 

Ef = -0.7 eV/atom 

BLi2Pt, CoLi2Pt, As4BTi3, Pt2SnTi, FeRu2As2, Sr4SnN5, PtYO2, 
Fe4Ge4Zr4H, Al6PdZr10, OsSbS, LaPt5Sb, As2PrRu2, PdPm, 
Ge2Sm2Zn, CdEuPd2, Ho2OsSi2, Ho2CdGe2, AsErTi, TiTmO, 
GeYb, HgYb2S, GeLuNa, GeLuMn, GeLuZr, HgHO2, NbRh2Th 

Case 2 
Eg = 1.5 eV 

Ef < -1.5 eV/atom 

Be3KLiO4, BaNaSeF, RbScS2, Er2Zn2As2O3, Au2Sr2O5, KLiZn3O5, 
Bi3Fe4LaO10, CrCuO, NaSb2O5, CrCuO (different structure), 
Ba2PdSe4O11, LiSmSe2, CaFeGaO4, Mg2Tb4HS9, Li6NaBiO6, 
LiSmSe2 (different structure) 

Case 3 
Power factor as large as possible 
0.3 eV ≤  Eg ≤ 1.5 eV 
Ef < 0 eV/atom 

Au2Sc2O3, Sr4In4O11, Ba2Cu2Te2F3, Ba2Ag2Te2F3, Ba6B2P2O7, 
La2Zn2As2O3, YSF2, Y2Zn2As2O3, AgBi2Se3Cl2, Cs6Ge8Au3, 
Ba3Sb2O2, Bi4S2O5 

 

S3.2 First-Principles Calculations in Case 1, and 2 

For all DFT calculations, we performed spin-polarized Perdew-Burke-Ernzerhof (PBE)19 
calculations with projector-augmented wave (PAW)-PBE pseudopotentials20 as implemented in 
the plane-wave based ab initio package, VASP21. We selected pseudopotentials as recommended 
in Materials Project database (accessed in Nov. 2019).22 In addition, we performed spin-polarized 
PBE+U calculations for transition metal (TM) oxides with the U-value of TM taken from Materials 
Project database (i.e. U = 3.7 for Cr).22 Atomic positions and unit cell parameters are fully relaxed 
using conjugate gradient descent method with the convergence criteria of 1.0e-5 for energy and 
0.05 eV/Å for force with 500 eV cut-off energy. Brillouin zone is used with the k-point densities of 
1000 k-points per atoms using the Pymatgen package.23 To compute the formation energy, we 
adapted GGA/GGA+U mixed approach (see below) with anion correction term adapted in 
Materials Project (i.e., -1.4046 eV/atom for O2, and -0.6635 eV/atom for S).24 All band gap values 
are computed using PBE (+U) functional with Blöchl correction-included tetrahedron method for 
Brillouin zone integration25 with increased k-point densities (i.e. 1500 k-points per atoms). All 

GGA+U energies (𝐸Cr,O compound
GGA+𝑈 ) are corrected by Equation S1. 

𝐸Cr,O compound
GGA+𝑈 corr. = 𝐸Cr,O compound

GGA+𝑈 − 𝑛Cr∆𝐸Cr  (Equation S1) 

where, 𝐸Cr,O compound
GGA+𝑈 corr.  is the corrected GGA+U energy for Cr, O compound, 𝑛Cr is the number 

of Cr atoms in the compound, and ∆𝐸Cr is the correction energy for Cr atom. In addition, we 
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included an O2 energy correction term (-1.4046 eV/atom) taken from the Materials Project 

database for the 𝐸Cr,O compound
GGA+𝑈 . After rearranging Equation S1, the correction energy for Cr atom 

(∆𝐸Cr) is then obtained using Equation S2. 

∆𝐸Cr = (𝐸f
calc. − 𝐸f

ref.) 𝑟Cr⁄    (Equation S2) 

In Equation S2, 𝐸f
calc.  is the formation energy calculated in this work, 𝐸f

ref.  is the formation 
energy for the 3-reference structures (Cr2O3, Cr5O12, and Cr6O11) taken from the Materials Project 
database22 all of which are at the convex hull of the Cr-O binary phase diagram, and 𝑟Cr is the 

fraction of Cr atom. Therefore, ∆𝐸Cr  can be obtained by calculating the slope of the (𝐸f
calc. −

𝐸f
ref.) vs. 𝑟Cr plot as shown in Figure S3. The adjusted formation energy values are listed in Table 

S7. 

 

Figure S3. Correction Energy for Cr 

Deriving correction energy for Cr (∆𝐸Cr) using the GGA/GGA+U-mixed scheme for the 3-CrxOy materials 
at the convex hull. 

Table S7. Results of the Three CrxOy Materials at the Convex Hull After Applying the Correction Energy Term 

Materials 
Ef from MP 
(eV/atom) 

After Correction 
(eV/atom) 

mp-773920 Cr5O12 -1.852 -1.864 

mp-19399 Cr2O3 -2.349 -2.344 

mp-1213798 Cr6O11 -2.131 -2.127 

S3.3 First-Principles Calculations in Case 3 

First-principles calculations of structure relaxations were performed with DFT using the PBE 
generalized gradient approximation (GGA)19. The PAW method26 as implemented in the VASP 
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code21 was applied for all the calculations. Energy cutoff of 520 eV for the plan-wave expansion 

and a Brillouin zone integration spacing of 2𝜋 ×  0.028 Å−1, and 2𝜋 × 0.013 Å−1 was used for 
structure relaxations and total energy calculations, respectively.  We employed the Gaussian 
method with the width of 0.02 eV to calculate the total energies and band gaps with the 
convergence criteria of 1.0e-8 eV. The transport coefficients were calculated using the BoltzTraP27 
code with the constant scattering time approximation (CSTA). 

S4. Design Cases 

S4.1 Eighteen FTCP-Designed Crystals for Design Target—Ef = -0.5 eV/atom (Case 1) 

 

Figure S4. Fourteen valid FTCP-Designed Crystals out of a Total of 18, Related to Figure 4. 

The designed crystals are unique, i.e., not existent in the Materials Project database. Four invalid (atom-
overlapping) variants of CeFeGe4 are not shown here. 

Figure S4 shows the FTCP-designed crystal structure of 14 valid crystals (with four invalid ones 
not shown). There are eight different crystal structures with > 30 different elements in the 14 
crystals, showing the FTCP can design crystals accessing a wide range of structures and chemistries. 

S4.2 DFT-Calculated Ef Values of FTCP-Designed Crystals in Case 1 
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Figure S5. DFT-Calculated Formation Energies of FTCP-Designed Crystals (70 Valid out of a Total of 77), 
where gray bands indicate target-satisfying regions within tolerance. Related to Figure 5. 

With target Ef equal to (A) -0.3, (B) -0.6, and (C) -0.7 eV/atom. Red dots represent target-satisfying 
designed crystals. 

Figure S5 shows three boxplots of DFT-calculated Ef values of FTCP-designed crystals with 
design target Ef = -0.3, -0.6, and -0.7 eV/atom. The success rates can be found in Table 1. 

S4.3 Dissimilarity Values of FTCP-Designed Crystals 

 

Figure S6. Dissimilarity Values of FTCP-Designed Crystals 

(A) Case 1, (B) Case 2, and (C) Case 3. Red dots represent target-satisfying designed crystals. 

We use dissimilarity values to assess the structural uniqueness of designed crystals. The 
dissimilarity value is the vector distance between two structures based on local coordination 
information from all sites in the two structures28. A zero indicates two identical crystals, while large 
values (>1) indicating huge dissimilarity. Figure S6 shows the minimum dissimilarity value 
compared to every crystal in the respective training sets for (A) Case 1, (B) Case 2, and (C) Case 3. 
For Case 1, the median dissimilarity value is 0.37, with 11 values (out of 84 valid designed crystals) 
above 0.75, which is the cutoff dissimilarity value used by Materials Project. For Case 2, the median 
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dissimilarity value is 0.57, with three values above 0.75 (out of 16 valid designed crystals). For Case 
3, the median dissimilarity value is 0.67, with five values above 0.75 (out of 12 valid designed 
crystals). 

S5. Invariance Study of the FTCP Representation 

Table S8. Performance Degradation of the FTCP Representation Used as Property Prediction/Mapping due 
to Translation, Rotation, Permutation, and Different Supercells 

The values are mean absolute error (MAE) | performance drop in percentage. The results are calculated 
with an updated version of Materials Project accessed on 14 Sep 2021. (Materials Project has updated since 
our design cases, which accessed Materials Project on 22 Jun 2020.)  All results are mean values from five-
fold cross validation. Dataset used is the same as the one in Case 1, described in Table S4. 

 Formation Energy 
Ef (eV/atom) 

Bandgap 
Eg (eV) 

Data 0.051 | 0% (base) 0.204 | 0% (base) 

Data with translation 0.055 | 9.1% 0.223 | 9.3% 

Data with rotation 0.053 | 3.4% 0.216 | 5.9% 

Data with permuted sites 0.242 | 376.3% 0.418 | 104.8% 

Data with different supercells 0.074 | 44.8% 0.262 | 28.5% 

The FTCP representation satisfies no invariances. To provide quantification to the performance 
drop due to different invariance operations, such as translation, rotation, permutation (of the 
order of sites), and different supercells, we offer Table S8 to evaluate the performance drop of the 
FTCP representation used for property prediction/mapping (although the FTCP representation is 
mainly developed to do inverse design). Translation is to apply translation to the site fractional 
coordinates. Rotation, in our case, is to apply permutation to columns of the lattice matrix, and 
the site coordinate matrix, i.e., exchanging a, b, or c. Permutation is to apply the permutation to 
rows of the site coordinate matrix, and the site occupancy matrix, i.e., the order of site inputted. 
Different supercells are to construct a new supercell such that the new lattice vectors are a linear 
combination of the original ones, while preserving a maximum number of sites to be 20. We 
observe that the FTCP representation respond most prominently to permutation of sites, resulting 
in the largest performance drop. 
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