Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis

Page view(s)
73
Checked on Nov 05, 2024
Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis
Title:
Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis
Journal Title:
ACS Nano
Publication Date:
13 July 2023
Citation:
Fu, H., Li, K., Zhang, C., Zhang, J., Liu, J., Chen, X., Chen, G., Sun, Y., Li, S., & Ling, L. (2023). Machine-Learning-Assisted Optimization of a Single-Atom Coordination Environment for Accelerated Fenton Catalysis. ACS Nano, 17(14), 13851–13860. https://doi.org/10.1021/acsnano.3c03610
Abstract:
Machine learning (ML) algorithms will be enablers in revolutionizing traditional methods of materials optimization. Here, we broaden the use of ML to assist the construction of Fenton-like single-atom catalysts (SACs) by developing a methodology including model building, training, and prediction. Our approach can efficiently extract synthesis parameters that exert a substantial influence on Fenton activity and accurately predict the phenol degradation rate k of SACs with a mean error of ±0.018 min–1. The extended synthesis window with accelerated learning enables the realization that the heating temperatures during SAC synthesis significantly influence the Fe–N coordination number, which ultimately dictates their performance. Through ML-guided optimization, a highly efficient SAC dominated by Fe–N5 sites with exceptional Fenton activity (k = 0.158 min–1) is identified. Our work provides an example for ML-assisted optimization of single-atom coordination environments and illuminates the feasibility of ML in accelerating the development of high-performance catalysts.
License type:
Publisher Copyright
Funding Info:
This research / project is supported by the Ministry of Education - Tier 2
Grant Reference no. : MOE-T2EP10220-0005

This research / project is supported by the Ministry of Education - Tier 1
Grant Reference no. : RG8/20

This work was supported by the grant from the National Science Fund for Excellent Young Scholars (No. 21822607), the National Natural Science Foundation of China (No. 22176147), China Scholarship Council (202106260199), the Fundamental Research Funds for Central Universities (No. 22120200178).
Description:
This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Nano, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see doi.org/10.1021/acsnano.3c03610
ISSN:
1936-0851
1936-086X
Files uploaded: