CeHAR: CSI-Based Channel-Exchanging Human Activity Recognition

Page view(s)
Checked on Feb 15, 2024
CeHAR: CSI-Based Channel-Exchanging Human Activity Recognition
CeHAR: CSI-Based Channel-Exchanging Human Activity Recognition
Journal Title:
IEEE Internet of Things Journal
Publication Date:
24 November 2022
Lu, X., Li, Y., Cui, W., & Wang, H. (2023). CeHAR: CSI-Based Channel-Exchanging Human Activity Recognition. IEEE Internet of Things Journal, 10(7), 5953–5961. https://doi.org/10.1109/jiot.2022.3224134
Despite the intense effort from the research community, state-of-the-art WiFi-based human activity recognition (HAR) performance remains unsatisfactory. Current approaches usually use individual characteristics of CSI, i.e., amplitude or phase measurements, to model the relationship between the changes of channel state information (CSI) and human activities, which lead to their failure to achieve satisfactory accuracy due to information loss. To deal with this issue, this article proposes CeHAR, a CSI-based HAR using a channel-exchanging fusion network to deep fuse the CSI amplitude and phase features to obtain the informative features for HAR. The proposed CeHAR is a parameter-free dual-characteristic fusion framework that dynamically exchanges channels between subnetworks of two kinds of characteristics to comprehensively learn informative features from both. Specifically, the proposed approach employs two subnetworks using convolutional neural networks to learn features from each characteristic of CSI. The magnitude of the batch-normalization (BN) scaling factor is used to determine the channel importance of each characteristic, and then guides the exchange process. The proposed CeHAR also shares convolutional filters, but keeps private BNs layers in different characteristics, which, as an added benefit, allows our characteristic fusion network to be nearly as compact as a single-characteristic network. Extensive real-world experiments have been conducted to evaluate the performance of our proposed CeHAR, and the experimental results illustrate that our proposed approach outperforms baselines.
License type:
Publisher Copyright
Funding Info:
This work was supported by the National Natural Science Foundation of China (61903231, 62273213, 62073199, 62203280), the Natural Science Foundation of Shandong Province (ZR2020MF095, ZR2022MF341), Taishan Scholarship Construction Engineering
© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Files uploaded:

File Size Format Action
cefn-channel-exchanging-network-for-human-activity-recognition.pdf 6.67 MB PDF Request a copy