Gao, L., Fu, H., Li, L., Chen, Y., Xu, M., & Xu, C.-Z. (2022). FedDC: Federated Learning with Non-IID Data via Local Drift Decoupling and Correction. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). https://doi.org/10.1109/cvpr52688.2022.00987
Abstract:
Federated learning (FL) allows multiple clients to collectively train a high-performance global model without sharing their private data. However, the key challenge in federated learning is that the clients have significant statistical heterogeneity among their local data distributions, which would cause inconsistent optimized local models on the clientside. To address this fundamental dilemma, we propose a novel federated learning algorithm with local drift decoupling and correction (FedDC). Our FedDC only introduces lightweight modifications in the local training phase, in which each client utilizes an auxiliary local drift variable to track the gap between the local model parameter and the global model parameters. The key idea of FedDC is to utilize this learned local drift variable to bridge the gap, i.e., conducting consistency in parameter-level. The experiment results and analysis demonstrate that FedDC yields expediting convergence and better performance on various image classification tasks, robust in partial participation settings, non-iid data, and heterogeneous clients.
License type:
Publisher Copyright
Funding Info:
This research / project is supported by the A*STAR - AI3 HTPO Seed Fund
Grant Reference no. : C211118012
The work is supported by the National Natural Science Foundation (NSF) under grant 62072306 and 61872372, Open Fund of Science and Technology on Parallel and Distributed Processing Laboratory under
grant 6142110200407