Automatic True/False Question Generation for Educational Purpose

Page view(s)
52
Checked on Oct 23, 2023
Automatic True/False Question Generation for Educational Purpose
Title:
Automatic True/False Question Generation for Educational Purpose
Journal Title:
Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022)
Keywords:
Publication Date:
26 July 2022
Citation:
Zou, B., Li, P., Pan, L., & Aw, A. T. (2022). Automatic True/False Question Generation for Educational Purpose. Proceedings of the 17th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2022). https://doi.org/10.18653/v1/2022.bea-1.10
Abstract:
In the field of teaching, true/false questioning is an important educational method for assessing students' general understanding of learning materials. Manually creating such questions requires extensive human effort and expert knowledge. Question generation (QG) technique offers the possibility to automatically generate a large number of questions. However, there is limited work on automatic true/false question generation due to the lack of training data and difficulty finding question-worthy content. In this paper, we propose an unsupervised True/False Question Generation approach (TF-QG) that automatically generates true/false questions from a given passage for reading comprehension test. TF-QG consists of a template-based framework that aims to test the specific knowledge in the passage by leveraging various NLP techniques, and a generative framework to generate more flexible and complicated questions using a novel masking-and-infilling strategy. Human evaluation shows that our model can generate high-quality and valuable true/false questions. In addition, simulated testing on the generated questions challenges the state-of-the-art inference models from NLI, QA, and fact verification tasks.
License type:
Publisher Copyright
Funding Info:
This research is supported by core funding from: I2R
Grant Reference no. : CR-2021- 001
Description:
ISBN:

Files uploaded:

File Size Format Action
2022bea-110-revised.pdf 385.26 KB PDF Open