Incentivizing Collaboration in Machine Learning via Synthetic Data Rewards

Page view(s)
138
Checked on Jan 22, 2025
Incentivizing Collaboration in Machine Learning via Synthetic Data Rewards
Title:
Incentivizing Collaboration in Machine Learning via Synthetic Data Rewards
Journal Title:
36th AAAI Conference on Artificial Intelligence
DOI:
Keywords:
Publication Date:
22 February 2022
Citation:
S. S. Tay, X. Xu, C. S. Foo, B. K. H.Low. Incentivizing Collaboration in Machine Learning via Synthetic Data Rewards. 36th AAAI Conference on Artificial Intelligence. 2022.
Abstract:
This paper presents a novel collaborative generative modeling (CGM) framework that incentivizes collaboration among self-interested parties to contribute data to a pool for training a generative model (e.g., GAN), from which synthetic data are drawn and distributed to the parties as rewards commensurate to their contributions. Distributing synthetic data as rewards (instead of trained models or money) offers task-and model-agnostic benefits for downstream learning tasks and is less likely to violate data privacy regulation. To realize the framework, we firstly propose a data valuation function using maximum mean discrepancy (MMD) that values data based on its quantity and quality in terms of its closeness to the true data distribution and provide theoretical results guiding the kernel choice in our MMD-based data valuation function. Then, we formulate the reward scheme as a linear optimization problem that when solved, guarantees certain incentives such as fairness in the CGM framework. We devise a weighted sampling algorithm for generating synthetic data to be distributed to each party as reward such that the value of its data and the synthetic data combined matches its assigned re-ward value by the reward scheme. We empirically show using simulated and real-world datasets that the parties’ synthetic data rewards are commensurate to their contributions.
License type:
Publisher Copyright
Funding Info:
This research / project is supported by the National Research Foundation, Singapore - AI Singapore Programme
Grant Reference no. : AISG2-RP-2020-018
Description:
ISSN:
TBC
Files uploaded:

File Size Format Action
syntheticrewards-cameraready-nocopyright.pdf 21.20 MB PDF Open