Predicting Event Memorability from Contextual Visual Semantics

Page view(s)
85
Checked on Feb 05, 2024
Predicting Event Memorability from Contextual Visual Semantics
Title:
Predicting Event Memorability from Contextual Visual Semantics
Journal Title:
Advances in Neural Information Processing Systems 34 (NeurIPS2021)
DOI:
Keywords:
Publication Date:
31 December 2021
Citation:
Xu, Q. (2021). Predicting Event Memorability from Contextual Visual Semantics. NeurIPS2021
Abstract:
Episodic event memory is a key component of human cognition. Predicting event memorability,i.e., to what extent an event is recalled, is a tough challenge in memory research and has profound implications for artificial intelligence. In this study, we investigate factors that affect event memorability according to a cued recall process. Specifically, we explore whether event memorability is contingent on the event context, as well as the intrinsic visual attributes of image cues. We design a novel experiment protocol and conduct a large-scale experiment with 47 elder subjects over 3 months. Subjects’ memory of life events is tested in a cued recall process. Using advanced visual analytics methods, we build a first-of-its-kind event memorability dataset (called R3) with rich information about event context and visual semantic features. Furthermore, we propose a contextual event memory network (CEMNet) that tackles multi-modal input to predict item-wise event memorability, which outperforms competitive benchmarks. The findings inform deeper understanding of episodic event memory, and open up a new avenue for prediction of human episodic memory. Source code is available at https://github.com/ffzzy840304/Predicting-Event-Memorability.
License type:
Publisher Copyright
Funding Info:
This research / project is supported by the A*STAR - JCO VIP REVIVE Project
Grant Reference no. : 1335h0009
Description:
ISSN:
Nil
Files uploaded: