Frame-based Multi-level Semantics Representation for text matching

Page view(s)
Checked on Sep 11, 2022
Frame-based Multi-level Semantics Representation for text matching
Frame-based Multi-level Semantics Representation for text matching
Other Titles:
Knowledge-Based Systems
Publication Date:
01 September 2021
Guo, S., Guan, Y., Li, R., Li, X., & Tan, H. (2021). Frame-based Multi-level Semantics Representation for text matching. Knowledge-Based Systems, 232, 107454. doi:10.1016/j.knosys.2021.107454
Text matching is a fundamental and critical problem in natural language understanding (NLU), where multi-level semantics matching is the most challenging task. Human beings can always leverage their semantic knowledge, while neural computer systems first learn sentence semantic representations and then perform text matching based on learned representation. However, without sufficient semantic information, computer systems will not perform very well. To bridge the gap, we propose a novel Frame-based Multi-level Semantics Representation (FMSR) model, which utilizes frame knowledge to extract multi-level semantic information within sentences explicitly for the text matching task. Specifically, different from existing methods that only rely on the sophisticated architectures, FMSR model, which leverages both frame and frame elements in FrameNet, is designed to integrate multi-level semantic information with attention mechanisms to learn better sentence representations. Our extensive experimental results show that FMSR model performs better than the state-of-the-art technologies on two text matching tasks.
License type:
Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Funding Info:
This research is supported by core funding from: Institute for Infocomm Research
Grant Reference no. : Nil

This work was sponsored by the National Natural Science Foundation of China.
Files uploaded:

Files uploaded:

File Size Format Action
fmsr-for-text-matching.pdf 379.32 KB PDF Request a copy