Ak, K. E., Sun, Y., & Lim, J. H. (2021). Robust Multi-Frame Future Prediction By Leveraging View Synthesis. 2021 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip42928.2021.9506508
Abstract:
In this paper, we focus on the problem of video prediction, i.e., future frame prediction. Most state-of-the-art techniques focus on synthesizing a single future frame at each step. However, this leads to utilizing the model’s own predicted frames when synthesizing multi-step prediction, resulting in gradual performance degradation due to accumulating errors in pixels. To alleviate this issue, we propose a model that can handle multi-step prediction. Additionally, we employ techniques to leverage from view synthesis for future frame prediction, where both problems are treated independently in the literature. Our proposed method employs multiview camera pose prediction and depth-prediction networks to project the last available frame to desired future frames via differentiable point cloud renderer. For the synthesis of moving objects, we utilize an additional refinement stage. In experiments, we show that the proposed framework outperforms state-of-the art methods in both KITTI and Cityscapes datasets.
License type:
Publisher Copyright
Funding Info:
This research / project is supported by the Agency for Science, Technology and Research (A*STAR) - AME Programmatic Funding Scheme
Grant Reference no. : EC-2018-064