An Improved Synthesis of N-(4-[18F]Fluorobenzoyl)-Interleukin-2 for the Preclinical PET Imaging of Tumour-Infiltrating T-cells in CT26 and MC38 Colon Cancer Models

Page view(s)
8
Checked on Jan 05, 2023
An Improved Synthesis of N-(4-[18F]Fluorobenzoyl)-Interleukin-2 for the Preclinical PET Imaging of Tumour-Infiltrating T-cells in CT26 and MC38 Colon Cancer Models
Title:
An Improved Synthesis of N-(4-[18F]Fluorobenzoyl)-Interleukin-2 for the Preclinical PET Imaging of Tumour-Infiltrating T-cells in CT26 and MC38 Colon Cancer Models
Other Titles:
Molecules
Publication Date:
19 March 2021
Citation:
Khanapur, Yong, F. F., Hartimath, S. V., Jiang, L., Ramasamy, B., Cheng, P., Narayanaswamy, P., Goggi, J. L., & Robins, E. G. (2021). An Improved Synthesis of N-(4-[18F]Fluorobenzoyl)-Interleukin-2 for the Preclinical PET Imaging of Tumour-Infiltrating T-cells in CT26 and MC38 Colon Cancer Models. Molecules, 26(6), 1728. https://doi.org/10.3390/molecules26061728
Abstract:
Positron emission tomography (PET) imaging of activated T-cells with N-(4-[18F]fluorobenzoyl)-interleukin-2 ([18F]FB-IL-2) may be a promising tool for patient management to aid in the assessment of clinical responses to immune therapeutics. Unfortunately, existing radiosynthetic methods are very low yielding due to complex and time-consuming chemical processes. Herein, we report an improved method for the synthesis of [18F]FB-IL-2, which reduces synthesis time and improves radiochemical yield. With this optimized approach, [18F]FB-IL-2 was prepared with a non-decay-corrected radiochemical yield of 3.8 ± 0.7% from [18F]fluoride, 3.8 times higher than previously reported methods. In vitro experiments showed that the radiotracer was stable with good radiochemical purity (>95%), confirmed its identity and showed preferential binding to activated mouse peripheral blood mononuclear cells. Dynamic PET imaging and ex vivo biodistribution studies in naïve Balb/c mice showed organ distribution and kinetics comparable to earlier published data on [18F]FB-IL-2. Significant improvements in the radiochemical manufacture of [18F]FB-IL-2 facilitates access to this promising PET imaging radiopharmaceutical, which may, in turn, provide useful insights into different tumour phenotypes and a greater understanding of the cellular nature and differential immune microenvironments that are critical to understand and develop new treatments for cancers.
License type:
Attribution 4.0 International (CC BY 4.0)
Funding Info:
This research is supported by core funding from: Institute of Bioengineering and Bioimaging (IBB), Singapore.
Grant Reference no. :
Description:
ISSN:
1420-3049
Files uploaded: