Multi-Level Transfer Learning from Near-Field to Far-Field Speaker Verification

Page view(s)
27
Checked on Nov 11, 2024
Multi-Level Transfer Learning from Near-Field to Far-Field Speaker Verification
Title:
Multi-Level Transfer Learning from Near-Field to Far-Field Speaker Verification
Journal Title:
Interspeech 2021
Publication Date:
30 August 2021
Citation:
Zhang, L., Wang, Q., Lee, K. A., Xie, L., & Li, H. (2021). Multi-Level Transfer Learning from Near-Field to Far-Field Speaker Verification. Interspeech 2021. doi:10.21437/interspeech.2021-1980
Abstract:
In far-field speaker verification, the performance of speaker embeddings is susceptible to degradation when there is a mismatch between the conditions of enrollment and test speech. To solve this problem, we propose the feature-level and instance-level transfer learning in the teacher-student framework to learn a domain-invariant embedding space. For the feature-level knowledge transfer, we develop the contrastive loss to transfer knowledge from teacher model to student model, which not only decrease the intra-class distance, but also enlarge the inter-class distance. Moreover, we propose the instance-level pairwise distance transfer method to force the student model to preserve pairwise instances distance from the well optimized embedding space of the teacher model. On FFSVC 2020 evaluation set, our EER on Full-eval trials is relatively reduced by 13.9% compared with the fusion system result on Partial-eval trials of Task2. On Task1, compared with the winner’s DenseNet result on Partial-eval trials, our minDCF on Full-eval trials is relatively reduced by 6.3%. On Task3, the EER and minDCF of our proposed method on Full-eval trials are very close to the result of the fusion system on Partial-eval trials. Our results also outperform other competitive domain adaptation methods.
License type:
Publisher Copyright
Funding Info:
This research / project is supported by the Agency for Science, Technology and Research - National Robotics Program
Grant Reference no. : 192 25 00054
Description:
ISSN:
1990-9772
Files uploaded:

File Size Format Action
zhang21g-interspeech.pdf 1.11 MB PDF Open