Velocidapter: Task-oriented Dialogue Comprehension Modeling Pairing Synthetic Text Generation with Domain Adaptation

Page view(s)
29
Checked on Sep 09, 2024
Velocidapter: Task-oriented Dialogue Comprehension Modeling Pairing Synthetic Text Generation with Domain Adaptation
Title:
Velocidapter: Task-oriented Dialogue Comprehension Modeling Pairing Synthetic Text Generation with Domain Adaptation
Journal Title:
Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue
DOI:
Publication Date:
31 July 2021
Citation:
Ibrahim Taha Aksu, Zhengyuan Liu, Min-Yen Kan, and Nancy Chen, Velocidapter: Task-oriented Dialogue Comprehension Modeling Pairing Synthetic Text Generation with Domain Adaptation, Proceedings of the 22nd Annual Meeting of the Special Interest Group on Discourse and Dialogue, July 2021
Abstract:
We introduce a synthetic dialogue generation framework, Velocidapter, which addresses the corpus availability problem for dialogue comprehension. Velocidapter augments datasets by simulating synthetic conversations for a task-oriented dialogue domain, requiring a small amount of bootstrapping work for each new domain. We evaluate the efficacy of our framework on a task-oriented dialogue comprehension dataset, MRCWOZ, which we curate by annotating questions for slots in the restaurant, taxi, and hotel domains of the MultiWOZ 2.2 dataset (Zang et al., 2020). We run experiments within a low-resource setting, where we pretrain a model on SQuAD, fine-tuning it on either a small original data or on the synthetic data generated by our framework. Velocidapter shows significant improvements using both the transformer-based BERTBase and BiDAF as base models. We further show that the framework is easy to use by novice users and conclude that Velocidapter can greatly help training over task-oriented dialogues, especially for low-resourced emerging domains.
License type:
Attribution 4.0 International (CC BY 4.0)
Funding Info:
Work by the first author was supported by theSINGA scholarship, administered by A*STAR.
Description:
ISBN:
2021.sigdial-1.14