67 million natural product-like compound database generated via molecular language processing

Page view(s)
284
Checked on Aug 02, 2024
67 million natural product-like compound database generated via molecular language processing
Title:
67 million natural product-like compound database generated via molecular language processing
Journal Title:
Scientific Data
Publication Date:
19 May 2023
Citation:
Tay, D. W. P., Yeo, N. Z. X., Adaikkappan, K., Lim, Y. H., & Ang, S. J. (2023). 67 million natural product-like compound database generated via molecular language processing. Scientific Data, 10(1). https://doi.org/10.1038/s41597-023-02207-x
Abstract:
AbstractNatural products are a rich resource of bioactive compounds for valuable applications across multiple fields such as food, agriculture, and medicine. For natural product discovery, high throughput in silico screening offers a cost-effective alternative to traditional resource-heavy assay-guided exploration of structurally novel chemical space. In this data descriptor, we report a characterized database of 67,064,204 natural product-like molecules generated using a recurrent neural network trained on known natural products, demonstrating a significant 165-fold expansion in library size over the approximately 400,000 known natural products. This study highlights the potential of using deep generative models to explore novel natural product chemical space for high throughput in silico discovery.
License type:
Attribution 4.0 International (CC BY 4.0)
Funding Info:
This research / project is supported by the A*STAR - SIBER
Grant Reference no. : C211917003
Description:
ISSN:
2052-4463
Files uploaded:

File Size Format Action
s41597-023-02207-x.pdf 1.69 MB PDF Open