Self-implantable double-layered micro-drugreservoirs for efficient and controlled ocular drug delivery

Page view(s)
10
Checked on Feb 07, 2023
Self-implantable double-layered micro-drugreservoirs for efficient and controlled ocular drug delivery
Title:
Self-implantable double-layered micro-drugreservoirs for efficient and controlled ocular drug delivery
Other Titles:
Nature Communications
Keywords:
Publication Date:
06 November 2018
Citation:
Than, A., Liu, C., Chang, H. et al. Self-implantable double-layered micro-drug-reservoirs for efficient and controlled ocular drug delivery. Nat Commun 9, 4433 (2018). https://doi.org/10.1038/s41467-018-06981-w
Abstract:
Eye diseases and injuries impose a significant clinical problem worldwide. Safe and effective ocular drug delivery is, however, challenging due to the presence of ocular barriers. Here we report a strategy using an eye patch equipped with an array of detachable microneedles. These microneedles can penetrate the ocular surface tissue, and serve as implanted micro-reservoirs for controlled drug delivery. The biphasic drug release kinetics enabled by the double-layered micro-reservoirs largely enhances therapeutic efficacy. Using corneal neovascularization as the disease model, we show that delivery of an anti-angiogenic monoclonal antibody (DC101) by such eye patch produces ~90% reduction of neovascular area. Furthermore, quick release of an anti-inflammatory compound (diclofenac) followed by a sustained release of DC101 provides synergistic therapeutic outcome. The eye patch application is easy and minimally invasive to ensure good patient compliance. Such intraocular drug delivery strategy promises effective home-based treatment of many eye diseases.
License type:
http://creativecommons.org/licenses/by/4.0/
Funding Info:
This research was supported by Singapore National Research Foundation under its CBRG grants (NMRC/CBRG/0070/2014 and NMRC/CBRG/0058/2014) administrated by the Singapore Ministry of Health’s National Medical Research Council; Singapore Ministry of Education under its AcRF Tier 1 Grants RG126/15, RG 131/15 and RG52/17-(S) and AcRF tier 2 grant (MOE2017-T2-2-005); Singapore A*STAR Biomedical Research Council under its IAF-PP grant.
Description:
ISSN:
2041-1723
Files uploaded:

File Size Format Action
148-s41467-018-06981-w.pdf 6.41 MB PDF Open