Targeting metabolic flexibility via angiopoietin-like 4 protein sensitizes metastatic cancer cells to chemotherapy drugs

Page view(s)
33
Checked on Nov 28, 2024
Targeting metabolic flexibility via angiopoietin-like 4 protein sensitizes metastatic cancer cells to chemotherapy drugs
Title:
Targeting metabolic flexibility via angiopoietin-like 4 protein sensitizes metastatic cancer cells to chemotherapy drugs
Journal Title:
Molecular Cancer
Keywords:
Publication Date:
20 October 2018
Citation:
Lim, M.M.K., Wee, J.W.K., Soong, J.C. et al. Targeting metabolic flexibility via angiopoietin-like 4 protein sensitizes metastatic cancer cells to chemotherapy drugs. Mol Cancer 17, 152 (2018). https://doi.org/10.1186/s12943-018-0904-z
Abstract:
Overcoming multidrug resistance has always been a major challenge in cancer treatment. Recent evidence suggested epithelial-mesenchymal transition plays a role in MDR, but the mechanism behind this link remains unclear. We found that the expression of multiple ABC transporters was elevated in concordance with an increased drug efflux in cancer cells during EMT. The metastasis-related angiopoietin-like 4 (ANGPTL4) elevates cellular ATP to transcriptionally upregulate ABC transporters expression via the Myc and NF-κB signaling pathways. ANGPTL4 deficiency reduced IC50 of anti-tumor drugs and enhanced apoptosis of cancer cells. In vivo suppression of ANGPTL4 led to higher accumulation of cisplatin-DNA adducts in primary and metastasized tumors, and a reduced metastatic tumor load. ANGPTL4 empowered cancer cells metabolic flexibility during EMT, securing ample cellular energy that fuels multiple ABC transporters to confer EMT-mediated chemoresistance. It suggests that metabolic strategies aimed at suppressing ABC transporters along with energy deprivation of EMT cancer cells may overcome drug resistance.
License type:
http://creativecommons.org/licenses/by/4.0/
Funding Info:
This research is supported by the Singapore Ministry of Education under its Singapore Ministry of Education Academic Research Fund Tier 1 (RG143/17) to NST.
Description:
ISSN:
1476-4598
Files uploaded:

File Size Format Action
109-s12943-018-0904-z.pdf 3.13 MB PDF Open