Sustained-releasing hollow microparticles with dual-anticancer drugs elicit greater shrinkage of tumor spheroids

Page view(s)
35
Checked on Aug 22, 2024
Sustained-releasing hollow microparticles with dual-anticancer drugs elicit greater shrinkage of tumor spheroids
Title:
Sustained-releasing hollow microparticles with dual-anticancer drugs elicit greater shrinkage of tumor spheroids
Journal Title:
Oncotarget
Keywords:
Publication Date:
24 August 2017
Citation:
Baek J., Chong Choo C., Soon Tan N., Chye Joachim Loo S. Sustained-releasing hollow microparticles with dual-anticancer drugs elicit greater shrinkage of tumor spheroids. Oncotarget. 2017; 8: 80841-80852. Retrieved from https://www.oncotarget.com/article/20591/text/
Abstract:
Polymeric particulate delivery systems are vastly explored for the delivery of chemotherapeutic agents. However, the preparation of polymeric particulate systems with the capability of providing sustained release of two or more drugs is still a challenge. Herein, poly (D,L-lactic-co-glycolic acid, 50:50) hollow microparticles co-loaded with doxorubicin and paclitaxel were developed through double-emulsion solvent evaporation technique. Hollow microparticles were formed through the addition of an osmolyte into the fabrication process. The benefits of hollow over solid microparticles were found to be higher encapsulation efficiency and a more rapid drug release rate. Further modification of the hollow microparticles was accomplished through the introduction of methyl-β-cyclodextrin. With this, a higher encapsulation efficiency of both drugs and an enhanced cumulative release were achieved. Spheroid study further demonstrated that the controlled release of the drugs from the methyl-β-cyclodextrin -loaded hollow microparticles exhibited enhanced tumor regressions of MCF-7 tumor spheroids. Such hollow dual-drug-loaded hollow microparticles with sustained releasing capabilities may have a potential for future applications in cancer therapy.
License type:
http://creativecommons.org/licenses/by/4.0/
Funding Info:
The authors would like to acknowledge the financial support from the Singapore Centre on Environmental Life Sciences Engineering (SCELSE) (M4330001.C70), the School of Materials Science and Engineering (M020070110), the NTU-National Healthcare Group (NTU-NHG) grant (ARG/14012), and the Ministry of Education Tier 1 grant (RG11/16).
Description:
Open Access Journal
ISSN:
1949-2553
Files uploaded:

File Size Format Action
111-20591-295269-4-pb.pdf 3.17 MB PDF Open