Utility of Ion-Mobility Spectrometry for Deducing Branching of Multiply Charged Glycans and Glycopeptides in a High-Throughput Positive ion LC-FLR-IMS-MS Workflow

Utility of Ion-Mobility Spectrometry for Deducing Branching of Multiply Charged Glycans and Glycopeptides in a High-Throughput Positive ion LC-FLR-IMS-MS Workflow
Title:
Utility of Ion-Mobility Spectrometry for Deducing Branching of Multiply Charged Glycans and Glycopeptides in a High-Throughput Positive ion LC-FLR-IMS-MS Workflow
Other Titles:
Analytical Chemistry
Publication Date:
09 November 2020
Citation:
Pallister, E. G., Choo, M. S. F., Walsh, I., Tai, J. N., Tay, S. J., Yang, Y. S., … Nguyen-Khuong, T. (2020). Utility of Ion-Mobility Spectrometry for Deducing Branching of Multiply Charged Glycans and Glycopeptides in a High-Throughput Positive ion LC-FLR-IMS-MS Workflow. Analytical Chemistry, 92(23), 15323–15335. doi:10.1021/acs.analchem.0c01954
Abstract:
High-throughput glycan analysis has become an important part of biopharmaceutical production and quality control. However, it is still a significant challenge in the field of glycomics to easily deduce isomeric glycan structures, especially in a high-throughput manner. Ion mobility spectrometry (IMS) is an excellent tool for differentiating isomeric glycan structures. However, demonstrations of the utility of IMS in high-throughput workflows such as liquid chromatography-fluorescence-mass spectrometry (LC-FLR-MS) workflows have been limited with only a small amount of collision cross section (CCS) data available. In particular, IMS data of glycan fragments obtained in positive ion mode are limited in comparison to those obtained in negative ion mode despite positive ion mode being widely used for glycomics. Here, we describe IMS TWCCSN2 data obtained from a high-throughput LC-FLR-IMS-MS workflow in positive ion mode. We obtained IMS data from a selection of RapiFluor-MS (RFMS) labeled N-glycans and also glycopeptides. We describe how IMS is able to distinguish isomeric N-glycans and glycopeptides using both intact IMS and fragment-based IMS glycan sequencing experiments in positive ion mode, without significantly altering the high-throughput nature of the analysis. For the first time, we were able to successfully use IMS in positive ion mode to determine the branching of isomeric glycopeptides and RFMS labeled glycans. Further, we highlight that IMS glycan sequencing of fragments obtained from RFMS labeled glycans was similar to that of glycopeptides. Finally, we show that the IMS glycan sequencing approach can highlight shared structural features of nonisomeric glycans in a high-throughput LC-FLR-IMS-MS workflow.
License type:
Publisher Copyright
Funding Info:
This research / project is supported by the ASTAR, under GlycoSing (SPF) programme
Description:
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Analytical Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/acs.analchem.0c01954
ISSN:
0003-2700
1520-6882
Files uploaded:

File Size Format Action
utility-of-ion-mobility-spectrometry-for-deducing-branching.pdf 1.03 MB PDF Request a copy