Si Microfluid Cooler With Jet-Slot Array for Server Processor Direct Liquid Cooling

Page view(s)
39
Checked on Jun 20, 2024
Si Microfluid Cooler With Jet-Slot Array for Server Processor Direct Liquid Cooling
Title:
Si Microfluid Cooler With Jet-Slot Array for Server Processor Direct Liquid Cooling
Journal Title:
IEEE Transactions on Components, Packaging and Manufacturing Technology
Publication Date:
08 August 2019
Citation:
Y. Han, B. L. Lau, G. Tang, H. Chen and X. Zhang, "Si Microfluid Cooler With Jet-Slot Array for Server Processor Direct Liquid Cooling," in IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 10, no. 2, pp. 255-262, Feb. 2020, doi: 10.1109/TCPMT.2019.2933864.
Abstract:
With the rapid growth of information technology (IT), the requirement of higher computing performance results in a much higher power density in data center server. A Si microfluid cooler with jet-slot array has been developed for direct liquid cooling of a server processor in a data center to handle increased heating power and maintain stable and uniform thermal performance. To mitigate the energy cost of the cooling system, the developed liquid cooling solution can enable aggressive heat removal capability with a low power consumption requirement. A stacked Si cooler of three plates and four different layer structures has been designed, fabricated, and tested. The novel heat sink includes jet-slot array, drain-slot array, and multiple pin fins. By overcoming the negative cross-flow effect, a high heat transfer rate has been obtained, covering the whole cooling area. With a volume flow rate of 0.5 L/min, 150-W chip heating power can be dissipated while maintaining the maximum chip temperature rise of 15 C. A chip temperature variation of 5% has been realized, suggesting much desirable cooling uniformity for the whole chip. With the Si structure, this liquid cooling solution can be directly implemented onto the chip, and the thermal path can be sharply shortened, which enable a decreased thermal resistance between the cold plate and the heat source. Great agreement has been obtained between the experimental results and the simulation results. The developed direct liquid solution with Si cooler shows guarantee to enable the potential capability of future advanced server processors.
License type:
PublisherCopyrights
Funding Info:
This work was supported by the National Research Foundation, Prime Minister’s Office, Singapore, through its Green Data Centre Research Programme under Grant NRF2015ENC-GDCRO1001-032
Description:
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
ISSN:
2156-3950
2156-3985
Files uploaded:

File Size Format Action
pub19-243-sip-002.pdf 2.66 MB PDF Open