Improved human Pluripotent Stem Cell Attachment and spreading on xeno-free lamini-521 coated microcarriers results in efficient growth in agitated cultures

Improved human Pluripotent Stem Cell Attachment and spreading on xeno-free lamini-521 coated microcarriers results in efficient growth in agitated cultures
Title:
Improved human Pluripotent Stem Cell Attachment and spreading on xeno-free lamini-521 coated microcarriers results in efficient growth in agitated cultures
Other Titles:
BioResearch Open Access
Publication Date:
28 April 2015
Citation:
Lam AT, Li J, Chen AK, Birch WR, Reuveny S, Oh SK. Improved Human Pluripotent Stem Cell Attachment and Spreading on Xeno-Free Laminin-521-Coated Microcarriers Results in Efficient Growth in Agitated Cultures. Biores Open Access. 2015;4(1):242‐257. Published 2015 Apr 1. doi:10.1089/biores.2015.0010
Abstract:
Human pluripotent stem cells (hPSC) are self-renewing cells having the potential of differentiation into the three lineages of somatic cells and thus can be medically used in diverse cellular therapies. One of the requirements for achieving these clinical applications is development of completely defined xeno-free systems for large-scale cell expansion and differentiation. Previously, we demonstrated that microcarriers (MCs) coated with mouse laminin-111 (LN111) and positively charged poly-l-lysine (PLL) critically enable the formation and evolution of cells/MC aggregates with high cell yields obtained under agitated conditions. In this article, we further improved the MC system into a defined xeno-free MC one in which the MCs are coated with recombinant human laminin-521 (LN521) alone without additional positive charge. The high binding affinity of the LN521 to cell integrins enables efficient initial HES-3 cell attachment (87%) and spreading (85%), which leads to generation of cells/MC aggregates (400 μm in size) and high cell yields (2.4-3.5×10(6) cells/mL) within 7 days in agitated plate and scalable spinner cultures. The universality of the system was demonstrated by propagation of an induced pluripotent cells line in this defined MC system. Long-term pluripotent (>90% expression Tra-1-60) cell expansion and maintenance of normal karyotype was demonstrated after 10 cell passages. Moreover, tri-lineage differentiation as well as directed differentiation into cardiomyocytes was achieved. The new LN521-based MC system offers a defined, xeno-free, GMP-compatible, and scalable bioprocessing platform for the production of hPSC with the quantity and quality compliant for clinical applications. Use of LN521 on MCs enabled a 34% savings in matrix and media costs over monolayer cultures to produce 10(8) cells.
License type:
http://creativecommons.org/licenses/by/4.0/
Funding Info:
This research is supported by Bioprocessing Technology Institute, A*STAR
Description:
ISSN:
2164-7844
2164-7860
Files uploaded: