High-Affinity DNA Aptamer Generation Targeting von Willebrand Factor A1-Domain by Genetic Alphabet Expansion for Systematic Evolution of Ligands by Exponential Enrichment Using Two Types of Libraries Composed of Five Different Bases.

Page view(s)
20
Checked on Oct 06, 2024
High-Affinity DNA Aptamer Generation Targeting von Willebrand Factor A1-Domain by Genetic Alphabet Expansion for Systematic Evolution of Ligands by Exponential Enrichment Using Two Types of Libraries Composed of Five Different Bases.
Title:
High-Affinity DNA Aptamer Generation Targeting von Willebrand Factor A1-Domain by Genetic Alphabet Expansion for Systematic Evolution of Ligands by Exponential Enrichment Using Two Types of Libraries Composed of Five Different Bases.
Journal Title:
Journal of the American Chemical Society
Keywords:
Publication Date:
28 December 2016
Citation:
J. Am. Chem. Soc. 2017, 139, 1, 324-334
Abstract:
The novel evolutionary engineering method ExSELEX (genetic alphabet expansion for systematic evolution of ligands by exponential enrichment) provides high-affinity DNA aptamers that specifically bind to target molecules, by introducing an artificial hydrophobic base analogue as a fifth component into DNA aptamers. Here, we present a newer version of ExSELEX, using a library with completely randomized sequences consisting of five components: four natural bases and one unnatural hydrophobic base, 7-(2-thienyl)imidazo[4,5-b]pyridine (Ds). In contrast to the limited number of Ds-containing sequence combinations in our previous library, the increased complexity of the new randomized library could improve the success rates of high-affinity aptamer generation. To this end, we developed a sequencing method for each clone in the enriched library after several rounds of selection. Using the improved library, we generated a Ds-containing DNA aptamer targeting von Willebrand factor A1-domain (vWF) with significantly higher affinity (KD = 75 pM), relative to those generated by the initial version of ExSELEX, as well as that of the known DNA aptamer consisting of only the natural bases. In addition, the Ds-containing DNA aptamer was stabilized by introducing a mini-hairpin DNA resistant to nucleases, without any loss of affinity (KD = 61 pM). This new version is expected to consistently produce high-affinity DNA aptamers.
License type:
Funding Info:
We thank Dr. Takashi Yabuki for setting up our clustering method with Excel to analyze the deep sequencing data. This work was supported by a Grant-in-Aid for Scientific Research [KAKENHI 26248043] from the Ministry of Education, Culture, Sports, Science and Technology (I.H.), by grants for projects focused on developing key technologies for discovering and manufacturing drugs for next-generation treatment and diagnosis from the Ministry of Economy, Trade, and Industry (I.H.), and by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) (M.K.).
Description:
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of the American Chemical Society, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/jacs.6b10767
ISSN:
0002-7863
1520-5126
Files uploaded:

File Size Format Action
revised-manuscript-by-matunaga-et-al.pdf 1.87 MB PDF Open