Vehicle Detection and Width Estimation in Rain by Fusing Radar and Vision

Vehicle Detection and Width Estimation in Rain by Fusing Radar and Vision
Title:
Vehicle Detection and Width Estimation in Rain by Fusing Radar and Vision
Other Titles:
2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)
Publication Date:
18 November 2018
Citation:
J. Wang, S. J. Chen, L. Zhou, K. Wan and W. Yau, "Vehicle Detection and Width Estimation in Rain by Fusing Radar and Vision," 2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV), Singapore, 2018, pp. 1063-1068. doi: 10.1109/ICARCV.2018.8581246
Abstract:
While much effort has been devoted to deep learning object detection, relatively limited attention has been paid to object detection in bad weather, e.g. rain, snow or haze. In heavy rain, the raindrop on the front windshield can make it difficult to detect object from an in-car camera. The conventional way to cope with this has been to use radar as the main detection sensor. However, radar is highly susceptible to false positives. Furthermore, many entry level radar sensors only return the centroid of each detected object, rather than its size and extent. In addition, due to lack of texture input, radar cannot discriminate a vehicle from a non-vehicle object, e.g. roadside pole. This motivates us to detect vehicle by fusing radar and vision. In this paper, we first calibrate the radar and camera with respect to the ground plane. The radar detections are then projected to the camera image for target width estimation. Empirical evaluation on a large database shows that there is a natural synergy in both sensors, as the image based estimation is found to be greatly facilitated by the accuracy of the radar detection.
License type:
PublisherCopyrights
Funding Info:
This research is supported in part by the A*STAR Grant for Autonomous Systems project, Singapore.
Description:
(c) 2018 IEEE.
ISBN:
978-1-5386-9582-1
978-1-5386-9581-4
978-1-5386-9583-8
Files uploaded:

File Size Format Action
icarcv18-0145-fi.pdf 763.88 KB PDF Open