Spectrum and Phase Adaptive CCA for SSVEP-based Brain Computer Interface

Spectrum and Phase Adaptive CCA for SSVEP-based Brain Computer Interface
Title:
Spectrum and Phase Adaptive CCA for SSVEP-based Brain Computer Interface
Other Titles:
2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Keywords:
Publication Date:
18 July 2018
Citation:
Z. Zhang, C. Wang, K. K. Ang, A. A. P. Wai and C. G. Nanyang, "Spectrum and Phase Adaptive CCA for SSVEP-based Brain Computer Interface," 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, 2018, pp. 311-314. doi: 10.1109/EMBC.2018.8512267
Abstract:
Among various brain activity patterns, Steady State Visual Evoked Potential (SSVEP) based Brain Computer Interface (BCI) requires the least training time while carrying the fastest information transfer rate, making it highly suitable for deploying efficient self-paced BCI systems. In this study, we propose a Spectrum and Phase Adaptive CCA (SPACCA) for subject- and device-specific SSVEP-based BCI. Cross subject heterogeneity of spectrum distribution is taken into consideration to improve the prediction accuracy. We design a library of phase shifting reference signals to accommodate subjective and device-related response time lag.With the flexible reference signal generating approach, the system can be optimized for any specific flickering source, include LED, computer screen and mobile devices. We evaluated the performance of SPACCA using three sets of data that use LED, computer screen and mobile device (tablet) as stimuli sources respectively. The first two data sets are publicly available whereas the third data set is collected in our BCI lab. Across different data sets, SPACCA consistently performs better than the baseline, i.e. standard CCA approach. Statistical test to compare the overall results across three data sets yield a p-value of 1.66e-6, implying the improvement is significant.
License type:
PublisherCopyrights
Funding Info:
Description:
(c) 2018 IEEE.
ISSN:
1558-4615
1557-170X
Files uploaded:

File Size Format Action
ssvepembc2018.pdf 308.88 KB PDF Open