Pushing the Envelope: Dengue Viral Membrane Coaxed into Shape by Molecular Simulations

Pushing the Envelope: Dengue Viral Membrane Coaxed into Shape by Molecular Simulations
Title:
Pushing the Envelope: Dengue Viral Membrane Coaxed into Shape by Molecular Simulations
Other Titles:
Structure
Keywords:
Publication Date:
07 July 2016
Citation:
Marzinek, Jan K. et al. Structure , Volume 24 , Issue 8 , 1410 - 1420
Abstract:
Dengue virus is a flavivirus responsible for millions of infections per year. Its surface contains a phospholipid bilayer, within which are embedded the envelope (E) and membrane (M) proteins, arranged with icosahedral geometry. Exposure to low pH triggers the E proteins to undergo conformational changes, which precede fusion with the host cell membrane and release of the viral genome. The flavivirus membrane exhibits significant local curvature and deformation, as revealed by cryoelectron microscopy (cryo-EM), but its precise structure and interactions with envelope components remain unclear. We now report simulations of the dengue viral particle that refine its envelope structure in unprecedented detail. Our final models are morphologically consistent with cryo-EM data, and reveal the structural basis for membrane curvature. Electrostatic interactions increased envelope complex stability; this coupling has potential functional significance in the context of the viral fusion mechanism and infective states.
License type:
PublisherCopyrights
Funding Info:
This research was supported by the Ministry of Education in Singapore (MOE AcRF Tier 3 Grant Number MOE2012-T3-1-008).
Description:
Full paper can be downloaded from the Publisher's URL provided.
ISSN:
0969-2126
1878-4186
Files uploaded:
File Size Format Action
There are no attached files.