Sequential Context Modeling for Smart Devices by Collaborative Hidden Markov Model

Page view(s)
30
Checked on Jan 10, 2025
Sequential Context Modeling for Smart Devices by Collaborative Hidden Markov Model
Title:
Sequential Context Modeling for Smart Devices by Collaborative Hidden Markov Model
Journal Title:
2018 IEEE 4th World Forum on Internet of Things (WF-IoT)
Publication Date:
07 May 2018
Citation:
M. Lin, V. W. Zheng and S. Xiang, "Sequential context modeling for smart devices by Collaborative Hidden Markov Model," 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), Singapore, 2018, pp. 771-777. doi: 10.1109/WF-IoT.2018.8355155
Abstract:
Smart devices become prevalent in our daily lives, as the advancement of mobile networks, sensor technologies and distributed computing. They easily collect rich context information (e.g., time, GPS location, Wifi info, app usage, etc.) from the device owners (i.e., the users). Modeling such sequential context data is important — it not only helps to profile the user, but also enables many context-aware applications, such as location-based services with the next location prediction and app usage predictions. However, context modeling is challenging, because the context data is heterogeneous and high-dimensional in terms of the huge number of possible contexts. In this paper, we propose a novel Collaborative Hidden Markov Model (CHMM). CHMM extends the sequential generative model HMM to a collaborative setting, such that only those users sharing similar behaviors can pool their data together to build a reliable model. We evaluate CHMM with real-world data for both next location prediction and app usage prediciton, and the results show that CHMM outperforms the baselines in both cases.
License type:
PublisherCopyrights
Funding Info:
This work was supported by MND (Ministry of National Development) Singapore, Sustainable Urban Living Program, under the grant no. SUL2013-5.
Description:
© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
ISBN:
978-1-4673-9944-9
Files uploaded:

File Size Format Action
pid5152029-wf-iot2018.pdf 411.66 KB PDF Open