A dual-mass fully decoupled MEMS gyroscope with wide bandwidthand high linearity

Page view(s)
15
Checked on Jul 28, 2022
A dual-mass fully decoupled MEMS gyroscope with wide bandwidthand high linearity
Title:
A dual-mass fully decoupled MEMS gyroscope with wide bandwidthand high linearity
Other Titles:
Sensors and Actuators A: Physical
Keywords:
Publication Date:
25 March 2017
Citation:
G.Q. Wu, G.L. Chua, Y.D. Gu, A dual-mass fully decoupled MEMS gyroscope with wide bandwidth and high linearity, In Sensors and Actuators A: Physical, Volume 259, 2017, Pages 50-56, ISSN 0924-4247, https://doi.org/10.1016/j.sna.2017.03.027.
Abstract:
tA fully decoupled z-axis MEMS gyroscope with wide bandwidth and high linearity is presented in this paper. The mechanical structure consists of a dual proof mass, which are mechanically coupled together using a pair of double folded springs. The fully decoupled approach is employed to lower the mechanical cross coupling between the drive mode and sense mode. The gyroscope is fabricated using a simple two-mask process based on a silicon-on-insulator (SOI) substrate with a 30- m-thick device layer. The electrostatic actuation and capacitive sensing gaps of around 1.1- m provide an aspect ratio of close to 27. The narrow capacitive gap increases the electromechanical coupling and improves the signal tonoise ratio (SNR) of the sensor. The fabricated MEMS gyroscope is vacuum packaged in a ceramic chip carrier in order to minimize the Brownian noise floor for achieving a better performance. A off-the-shelf integrated circuit with the excitation and sensing electronics is hybrid connected to the gyroscope. The MEMS gyroscope system demonstrates a bias instability of 9.6 deg/h, an angular random walk (ARW) of0.45 deg/√h, a bandwidth of greater than 120 Hz, and a scale-factor non linearity of 770 ppm in a full scale range of ±500 deg/s at room temperature.
License type:
PublisherCopyrights
Funding Info:
Description:
ISSN:
0924-4247
Files uploaded:

Files uploaded:

File Size Format Action
pub16-187-sam-024.pdf 2.91 MB PDF Open