Structure of the Varicella Zoster Virus Thymidylate Synthase Establishes Functional and Structural Similarities as the Human Enzyme and Potentiates Itself as a Target of Brivudine

Page view(s)
9
Checked on Mar 26, 2024
Structure of the Varicella Zoster Virus Thymidylate Synthase Establishes Functional and Structural Similarities as the Human Enzyme and Potentiates Itself as a Target of Brivudine
Title:
Structure of the Varicella Zoster Virus Thymidylate Synthase Establishes Functional and Structural Similarities as the Human Enzyme and Potentiates Itself as a Target of Brivudine
Journal Title:
PLoS ONE
Keywords:
Publication Date:
02 December 2015
Citation:
Hew K, Dahlroth S-L, Veerappan S, Pan LX, Cornvik T, Nordlund P (2015) Structure of the Varicella Zoster Virus Thymidylate Synthase Establishes Functional and Structural Similarities as the Human Enzyme and Potentiates Itself as a Target of Brivudine. PLoS ONE 10(12): e0143947. doi:10.1371/journal.pone.0143947
Abstract:
Varicella zoster virus (VZV) is a highly infectious human herpesvirus that is the causative agent for chicken pox and shingles. VZV encodes a functional thymidylate synthase (TS), which is the sole enzyme that produces dTMP from dUMP de novo. To study substrate binding, the complex structure of TSVZV with dUMP was determined to a resolution of 2.9 Å. In the absence of a folate co-substrate, dUMP binds in the conserved TS active site and is coordinated similarly as in the human encoded TS (TSHS) in an open conformation. The interactions between TSVZV with dUMP and a cofactor analog, raltitrexed, were also studied using differential scanning fluorimetry (DSF), suggesting that TSVZV binds dUMP and raltitrexed in a sequential binding mode like other TS. The DSF also revealed interactions between TSVZV and in vitro phosphorylated brivudine (BVDUP), a highly potent anti-herpesvirus drug against VZV infections. The binding of BVDUP to TSVZV was further confirmed by the complex structure of TSVZV and BVDUP solved at a resolution of 2.9 Å. BVDUP binds similarly as dUMP in the TSHS but it induces a closed conformation of the active site. The structure supports that the 5-bromovinyl substituent on BVDUP is likely to inhibit TSVZV by preventing the transfer of a methylene group from its cofactor and the subsequent formation of dTMP. The interactions between TSVZV and BVDUP are consistent with that TSVZV is indeed a target of brivudine in vivo. The work also provided the structural basis for rational design of more specific TSVZV inhibitors.
License type:
http://creativecommons.org/licenses/by/4.0/
Funding Info:
Description:
ISSN:
1932-6203
Files uploaded: