B. Li, T. T. Ng, X. Li, S. Tan and J. Huang, "Revealing the Trace of High-Quality JPEG Compression Through Quantization Noise Analysis," in IEEE Transactions on Information Forensics and Security, vol. 10, no. 3, pp. 558-573, March 2015. doi: 10.1109/TIFS.2015.2389148
Abstract:
To identify whether an image has been JPEG compressed is an important issue in forensic practice. The state-of-the-art methods fail to identify high-quality compressed images, which are common on the Internet. In this paper, we provide a novel quantization noise-based solution to reveal the traces of JPEG compression. Based on the analysis of noises in multiple-cycle JPEG compression, we define a quantity called forward quantization noise. We analytically derive that a decompressed JPEG image has a lower variance of forward quantization noise than its uncompressed counterpart. With the conclusion, we develop a simple yet very effective detection algorithm to identify decompressed JPEG images. We show that our method outperforms the state-of-the-art methods by a large margin especially for high-quality compressed images through extensive experiments on various sources of images. We also demonstrate that the proposed method is robust to small image size and chroma subsampling. The proposed algorithm can be applied in some practical applications, such as Internet image classification and forgery detection.
License type:
PublisherCopyrights
Funding Info:
Description:
(c) 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.